INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction..

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note wiil indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the originai, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are availabie for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FROM “BLACK ART” TO INDUSTRIAL DISCIPLINE:
THE SOFTWARE CRISIS AND THE MANAGEMENT OF PROGRAMMERS

Nathan L. Ensmenger

A DISSERTATION
In
History and Sociology of Science

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2001

ol oy s—

Supervisof of DisSertation

[l v S

Graduate Group Chairperson

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3015310

®

UMI

UMI Microform 3015310

Copyright 2001 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For Deborah and the boys.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

There are many people who contributed to the completion of this
dissertation. It is only as I sit down to write these acknowledgements that I
realize how indebted I am to my colleagues, advisors, and family.

Emily Thompson was a model advisor, and her thoughtful comments and
conscientious editing greatly enhanced the quality of my writing. Rob Kohler
has been a fount of ideas and inspiration throughout my graduate school
experience, and this project originated in one of his seminars. Janet Tighe was, as
always, gracious with her time, advice, and chocolate. Walter Licht influenced
my interpretation of software labor history in many ways, not least through his
comments on my chapters.

William Aspray deserves special recognition for his generous and unflagging
support of this and other projects. His influence on the discipline of the history
of computing extends far beyond his many publications, and includes as well his
remarkable gift for encouraging young scholars.

There are many other historians who have been kind enough to read and
comment on my work. Michael Mahoney, Bill Leslie, David Hounshell, and

Bruce Seely have all been particularly stimulating influences on my research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv From “Black Art” to Industrial Discipline

Financial support for this project has come from the History & Sociology of
Science department, the School of Arts & Sciences, and the Charles Babbage
Institute. The folks at the Babbage Institute have been extremely good to me, and
Arthur Norberg and Jeffrey Yost deserve special thanks for their support and
encouragement, as do Erwin and Adelle Tomash, who provided the funding for
my fellowship.

Additional financial support also came from quite a different quarter. This
project has the unique distinction of being probably the only humanities
dissertation ever funded (albeit indirectly) by Silicon Valley venture capital. My
former colleagues at E.J. Bell and Associates (now Crosstier.Com) - Ed Bell,
David Stansell, and Jeff Trabaudo - provided me with enough short-term
consulting work to support my very expensive graduate school habit. Thanks,
guys — there is no way I could have done this without you.

It would be difficult to overstate the contributions of my colleagues in the
History and Sociology of Science Department. My fellow dissertation students -
Joshua Buhs, Tom Haigh, Erin McLeary, and Susan Miller — provided
encouragement, editorial suggestions, and a much-needed sense of perspective
and humor. Pat Johnson, Joyce Roselle, and Sybil Csigi made things happen. It

would have been impossible to finish this project without their assistance.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements v

Finally, let me acknowledge the long-suffering and seemingly inexhaustible
support of my family. I thank my parents, Stephen and Elisabeth, for all the love
and opportunities that they have provided me. My wife Deborah has put up
with a great deal during the pursuit of my mad dream; she deserves much of the
credit for its completion. Deborah, you truly are my ideal partner and “a prize
beyond all jewels.” And, last but certainly not least, a special thanks to my sons,
Asher and Tate, who made the first five minutes after I came home from work

the best part of every day.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

FROM “BLACK ART” TO INDUSTRIAL DISCIPLINE:
THE SOFTWARE CRISIS AND THE MANAGEMENT OF PROGRAMMERS

Nathan L. Ensmenger

Professor Emily Thompson

For almost as long as there has been software, there has been a software
crisis. Laments about the inability of software developers to produce products on
time, within budget, and of acceptable quality and reliability have been a staple
of industry literature from the early decades of commercial computing to the
present. In an industry characterized by rapid change and innovation, the
rhetoric of the crisis has proven remarkably persistent.

Rather than treating the software crisis as a well-defined and universally
understood phenomenon, as it is often assumed to be in the industry and
historical literature, this dissertation considers it as a socially constructed
historical artifact. Ostensibly a debate about the “one best way” to manage a
computer programming project, the software crisis was in reality a series of
highly contested social negotiations about the role of electronic computing —and
of computing professionals — in modern corporate and academic organizations.

This dissertation explores the history of the computer in the modern
corporation as viewed from the perspective of computer programmers. It

describes the culture and methods of programming practice as they developed in

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract vii

the late 1950s and early 1960s, and traces the changes that occurred in these
practices as the programming community transformed from a tightly knit family
of "computer people” into a diverse and highly fragmented collection of
programmer/coders, systems analysts, and information technology specialists.
My argument is that the significant developments in software management that
occurred in the 1950s and 1960s can best be understood as a jurisdictional
struggle over control of the increasingly valuable occupational territory opened
up by the electronic digital computer. Like any major new social or technological
innovation, the computer could not simply be inserted, unchanged and
unnoticed, into the well-established social, technological, and political systems
that comprised the modern corporate organization. Just as the computer itself
was gradually reconstructed, in response to a changing social and technical
environment, from a scientific and military instrument into a mechanism for
corporate communication and control, the modern business organization had to

adapt itself to the presence of a powerful new technology.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

PROLOGUE: THE PERPETUAL SOFTWARE CRISIS.....cccueeeemeeemrsccceeccioramororenssssossosssssens 1
I THE SOFTWARE CRISIS AS A CRISIS OF PROFESSIONAL IDENTITY 1
INTRODUCTION: INVENTING THE COMPUTER PROGRAMMER.........ceeemeeeenneee- 12
I INVENTING THE COMPUTER PROGRAMMERccorveereanennes 12
II. ' THE LABOR CRISIS IN PROGRAMMING 27
II1. PROGRAMMERS AS PROFESSIONALS 32
Iv. PROGRAMMERS AND MANAGERS 38
V. ENGINEERING A SOLUTION 42
CHAPTER ONE: PROGRAMMING AS TECHNOLOGY AND PRACTICE........ccccccc... 44
I AUTOMATIC PROGRAMMERS ...ccuveeeirerrreosssrsessntsssssesassssmsssssssassesnnnsasassmsasssesssssassasssssassaseses 44
II. THE TOWER OF BABEL . 51
1. NO SILVER BULLET 87
CHAPTER TWO: THE MONGOLIAN HORDE VERSUS THE SUPERPROGRAMMER
... 93
I THE SOFTWARE CRISIS AS A PROBLEM OF PROGRAMMER MANAGEMENT 93
II. ARISTOCRACY, DEMOCRACY, AND SYSTEMS DESIGN 106
1. PROGRAMMERS, EVOLUTION, AND THE STRUGGLE FOR OCCUPATIONAL TERRITORY 146
CHAPTER THREE: THE PROFESSIONALIZATION OF PROGRAMMING................ 167
L THE HUMBLE PROGRAMMER teeeeereeesessassstensesserennannenns 167
II. THE DRIVE TOWARDS PROFESSIONALISM 171
III. COMPUTER SCIENCE AS THE KEY TO PROFESSIONALISM 176
Iv. THE CERTIFIED PUBLIC PROGRAMMERcccceveereereenannn eeevernmteseseaeeneresrensrrenne 197
V. PROFESSIONAL ASSOCIATIONS...cceeveerereeresrererssemssererssssssssessssssssssssssssssnsssessonsosssnsmssarasasas 221
VI THE LIMITS OF PROFESSIONALISM..... ; tesrmeneeseestebasseestasenasasessannnes 243
EPILOGUE: NO SILVER BULLETouuuutiettrccceersensenrrasessecessssesssssssasssssssssstnssssssssssessssansnss 249
L FROM EXHILARATION TO DISILLUSIONMENT .cvvveeeeeeeeeeeieeeessersnrnsssessssescnsssomessessssssssmassees 249
II. SOFTWARE’S CHRONIC CRISIS . 254
BIBLIOGRAPHY ...ocuoireetieeieeeeeeconecssnscessesesssssassessasssssesssssessssssesssssssassssssssasessssssansasssssesssnsssen 257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Figures ix

Table of Figures

ADVERTISEMENT FOR BENDIX COMPUTING, C. 1967. ccccuereeeeeeccreceeeneeeeceneranes 35
ADVERTISEMENT FROM DATAMATION MAGAZINE, C. 1968......ccceeeermmerccrecrcerencens 56
GENEALOGY OF PROGRAMMING LANGUAGES, 1952-1970. ...cocureeriivmvrerncrcrcrrncnes 80
COMMUNICATIONS PATTERNS IN THE CHIEF PROGRAMMING TEAM.............. 123
THE DEVELOPMENT SUPPORT LIBRARY...ooveeiiiierieccassnnnrerencnsteesremssssasssessescssnssssesacsses 129
CDP RECIPIENTS, 1961-1973. ...ooeeeeeeereeeteeeieevreeeesssesesessesssssenmnsmmmessesesssnsssmssesssmsssssessseasassnssas 201
ASSOCIATION FOR COMPUTER MACHINERY MEMBERSHIP, 1961-1973............... 227
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Prologue: The Perpetual Software Crisis

The shortage of programmers in the United States, or the “software crisis” as it has been
dubbed by experts, is producing fallout among practicing professionals today.'

Harry Leslie, Datamation (1967)

Demand [for capable developers] will continue to outstrip supply for the foreseeable
future. Hence, more and more software will be behind schedule, over budget,
underpowered, and of poor quality — and there's nothing we can do about it

“The Real Software Crisis,” Byte Magazine (1996)

I The Software Crisis as a Crisis of Professional Identity

In the fall of 1968, a diverse group of academic computer scientists, corporate
managers, and military officials gathered in Garmisch, Germany for the first-ever
NATO Conference on Software Engineering. The conference was intended to
address what many industry observers believed to be an impending “crisis” in
software production. Large software development projects had acquired a
reputation for being behind-schedule, over-budget, and bug-ridden. “We build
software like the Wright brothers built airplanes,” complained one prominent
participant: “build the whole thing, push it off the cliff, let it crash, and start over

13

again.”” The solution to the so-called “software crisis,” suggested the conference

organizers, was for software developers to adopt “the types of theoretical

' Harry Leslie, “The Report Program Generator,” Datamation (26-28) 13, 6 (1967), 26.
2 Bruce Webster, “The Real Software Crisis,” Byte Magazine21, 1 (1996), 218.

* RM Graham, quoted in Peter Naur, ed. Soffware Engineering: Proceedings of the
NATO Conferences (INew York: Petrocelli/Charter, 1976), 32.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 From “Black Art” to Industrial Discipline

foundations and practical disciplines that are traditional in the established
branches of engineering.”* In the interest of efficient software manufacturing,
the “black art” of programming had to make way for the “science” of software
engineering.

By defining the software crisis in terms of the discipline of “software
engineering,” the NATO Conference set an agenda that influenced many of the
technological, managerial, and professional developments in commercial
computing for the next several decades. The general consensus among historians
and practitioners alike is that the Garmisch meeting marked “a major cultural
shift in the perception of programming. Software writing started to make the
transition from being a craft for a long-haired programming priesthood to
becoming a real engineering discipline. It was the transformation from an art to

a science.””

The call to integrate “good engineering principles” into the software
development process has been the rallying cry of software developers from the
late 1960s to the present.

Despite the widespread adoption of the language and ideology of software

engineering, the vision of a rational “software factory” outlined at the 1968

*Naur, et al., 7.

> Martin Campbell-Kelly and William Aspray, Computer: A History of the Information
Machine (New York: Basic Books, 1996), 201.

¢ For example, see W. Saba, “ Software Engineer, Magic, and Witchcraft,” JEEE
Computer?29, 9 (1996); Edward Yourdon, ed., Classics in Software Engineering (New
York: Yourdon Press, 1979); Herbert Freeman and Phillip Lewis, Software Engineering
(New York: Academic Press, 1980)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Perpetual Software Crisis 3

Garmisch Conference has never coalesced into reality. The rhetoric of crisis
continues to dominate discussions about the health and future of the industry. A
recent report on the software crisis by the National Software Alliance raised
“serious concerns not only for the software industry, but, given the reliance of
every industry on software, for the entire U.S. economy.”” Software engineering
has not yet been able to establish itself as a “real” engineering discipline, and
many computer programmers still regard what they do as more of an art than a
science. According to one recent article in Scientific American, “A quarter of a
century later software engineering remains a term of aspiration. The vast
majority of computer code is still handcrafted from raw programming languages
by artisans using techniques they neither measure nor are able to repeat
consistently.” The Y2K crisis is only the most recent manifestation of the
software industry’s apparent predilection for apocalyptic rhetoric. In an
industry characterized by rapid change and innovation, the rhetoric of crisis has
proven remarkably consistent.

References to the chronic “software crisis” are in fact so ubiquitous that it is
possible to lose sight of their historical origins and significance. Specific claims

about the nature and extent of the crisis can be used, however, as a lens through

7 Quoted by Bob Bellinger, “Software Warning,” Electronic Engineering Times
(November 3, 1997). The NSA was responding to a statement by Federal Reserve
Chairman Alan Greenspan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 From “Black Art” to Industrial Discipline

which to examine broader issues in the history of software. This dissertation
explores the historical construction of the software crisis as a crisis of
programming labor. It argues that many of the crucial innovations in modern
software development — high-level programming languages, structured
programming techniques, and software engineering methodologies, for example
— reflect corporate concerns about the supply, training, and management of
programimers.

Rather than treating the software crisis as a well-defined and universally
understood phenomenon, as it is often assumed to be in the industry and
historical literature, this dissertation will consider it as a socially constructed
historical artifact. Like any major new social or technological innovation, the
computer could not simply be inserted, unchanged and unnoticed, into the well-
established social, technological, and political systems that comprised modern
corporate and academic organizations. Just as the computer itself was gradually
reconstructed, in response to a changing social and technical environment, from
a scientific and military instrument into a mechanism for corporate control and
communication, modern businesses and universities had to adapt themselves to
the presence of a powerful new technology.

My research focuses on this process of mutual reconstruction as it occurred

in commercial organizations in the 1950s and 1960s, for these were by far the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Perpetual Software Crisis 5

largest users of information technology in that period. As the computer
transformed from a foo! fo be managed into a tool for management, computer
users emerged as powerful “change-agents” (to use the management
terminology of the era). As one Wharton MBA graduate warned his colleagues
in a 1965 article, “As the EDP [electronic data processing] group takes on the role
of a corporate service organization, able to cut across organizational lines, a
revolution in the organizational power structure is bound to occur.”® Faced with
this new and powerful challenge to their occupational territory, traditional
managers attempted to reassert their control over corporate data processing. The
stridency of the crisis rhetoric used in this period reflects the increasingly
contested nature of this struggle over the intellectual and occupational
boundaries of the nascent programming profession.
Ostensibly a debate about the “one best way” to manage a computer
programming project, the software crisis was in reality a series of highly
contested social negotiations about the role of electronic computing — and of
computing professionals — in modern corporate and academic organizations.
Because the labor crisis in programming has been so widely referred to and
written about, it serves as an ideal launching pad for an exploration of other, less

familiar issues in the history of software. Software represents a crucial link

®John Golda, “The Effects of Computer Technology on the Traditional Role of
Management,” (MBA thesis, Wharton School, University of Pennsylvania, 1965), 34

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 From “Black Art” to Industrial Discipline

between the computer and its larger social and economic environment. In order
to take full advantage of the promise of information technology, users had to
adapt it to their own particular systems and processes. Software is what made
the computer useful. It transformed the latent power of a general-purpose
machine into a specific tool for solving actual real-world problems. As the
historian Michael Mahoney has suggested, software applications are “what make
the computer worth having; without them a computer is of no more utility or
value than a television set without broadcasting.”® For many organizations, it
was the availability of software that most determined the success or failure of
their computerization efforts. As computer hardware became faster, more
reliable, and less-expensive, the relative importance of software — and software
developers - became even more pronounced.

This dissertation attempts to provides a connection between the history of
software and a larger literature on labor and social history and the history of
technology. It reexamines the perennial debate about programming training and
management in terms of contemporary debates about socially constructed
notions of “skill,” “knowledge,” and “productivity.” It describes the culture and

methods of programming practice as they developed in the late 1950s and early

® Michael Mahoney, “Software: the self-programming machine,” to appear in Creating
Modern Computing, ed. A. Akera and F. Nebeker, (New York: Oxford U.P,
forthcoming).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Perpetual Software Crisis 7

1960s, and traces the changes that occurred in these practices as the
programming community transformed from a tightly knit family of "computer
people” into a diverse and highly fragmented collection of programmer/coders,
systems analysts, and information technology specialists. It focuses on the
conflict between the craft centered practices of the early programmers and the
"scientifically” oriented management techniques of their corporate managers. It
argues that the skills and expertise that computer programmers possessed
transcended traditional boundaries between business knowledge and technical
expertise, and that computer programmers constituted a substantial challenge to
established corporate hierarchies and power structures. It suggests that the
continued persistence of a “software crisis” mentality among industrial and
governmental managers, as well as the seemingly unrelenting quest of these
managers to develop a software development methodology that would finally
eliminate corporate dependence on the craft knowledge of individual
programmers, can best be understood in light of this struggle over workplace
authority.

It should be noted, however, that the study of labor processes presents
serious methodological challenges to historians. Conventional interpretations of
the software crisis are often based on the software management literature, which

is typically biased towards the perspective of employers and managers. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 From “Black Art” to Industrial Discipline

literature also tends to reflect an ideal rather than reality. The voice of the
worker is rarely represented in the types of sources that historians are
accustomed to dealing with. Very little is known about the experiences and
attitudes of the typical software developer, or about the craft practices and “shop

% There is almost no secondary literature

floor” activities of programmers.
available on this subject.

In an attempt to counter the traditional bias towards management
perspectives, I deliberately chose to construct my narrative around an eclectic
collection of source material and perspectives. The ongoing debate about the
software labor crisis has been passionate, contentious, and replete with
ambiguities and self-contradictions. The fact that the community of software
workers included both former theoretical physicists and Helen Gurley Brown's
“Cosmo Girls” is not an incidental curiosity; it is an essential element of the labor

history of software."" One of the goals of this dissertation is to convey the sense

of excitement and drama experienced by early software workers.

1 Michael Mahoney has more fully described these difficulties in his “The History of
Computing in the History of Technology,” Annals of the History of Computing 10,2
(1988), 113-125.

1 In 1968, at the height of the software crisis, Helen Gurley Brown, the controversial
editor of Cosmopolitan Magazine, published an article encouraging her “Cosmo Girls”
to become programmers. The article provoked a strong reaction on the part of male
programmers with professional aspirations. See Lois Mandel, “The Computer Girls,”
Cosmopolitan Magazine (April, 1967), 52-56.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Perpetual Software Crisis 9

The Introduction describes the origins of the computer programming as an
occupational and academic discipline, and explores the emergence of a so-called
“software crisis” in the late 1950s and 1960s. It focuses on the conflict between
the “art of programming” and the “science” of software engineering. It argues
that by representing the art of programming as a complex blend of creative
genius and technical acumen, “exacting and difficult enough to require real
intellectual ability,” its practitioners were able lay claim to the professional status
associated with similarly demanding and creative endeavors.”? Although
corporate managers were often frustrated by their dependence on the
idiosyncratic techniques of individual programmers, there was little evidence or
experience to suggest that they had any alternative. The psychological studies
and aptitude tests that companies used to identify potential programmers
reinforced conventional wisdom by suggesting that good programmers, like
gifted chess players or musicians, were born, not made.

By the beginning of the 1960s, however, a changing social and technical
environment prompted a re-evaluation of the nature and causes of the software
crisis. Chapter One describes attempts to develop technical solutions to the

software crisis. New “automatic programming” systems such as FORTRAN and

2B. Conway, Business experience with electronic computers, a synthesis of what has
been learned from electronic data processing installations. (Controllers Institute
Research Foundation, Inc.: New York, 1959), p. 81.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 From “Black Art” to Industrial Discipline

COBOL promised to “eliminate the middleman” by allowing users to program
their computers directly, without the need for expensive programming talent."
Although these technologies threatened the professional autonomy of
programmers, they also served as a focus for productive theoretical research, and
helped establish computer science as a legitimate academic discipline.

By the end of the 1960s the search for a “silver bullet” solution to the
software crisis had turned away from programming languages and towards
more comprehensive techniques for managing the programming process.
Chapter Two explores the changing relationship between software workers and
their corporate employers. Faced with a new and powerful challenge to their
occupational territory, traditional managers attempted to reassert their control
over corporate data processing. They attempted to impose on software
development lessons learned from traditional industrial manufacturing. Like
most professional managers in this period, they assumed that the proper
management of programming projects was simply a me.1tter of identifying and
implementing the “one best way” to develop software components.

Chapter Three focuses on the attempts of programmers to establish the

institutional structures associated with professionalism: university curricula;

1 RAND Symposium, “On Programming Languages, Part I,” Datamation 8, 11 (1962);
Fred Gruenberger and Stanley Naftaly, eds., Data Processing.Practically Speaking (Los
Angeles: Data Processing Digest, 1967), 85.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Perpetual Software Crisis 11

certification programs; professional associations; and codes of ethics. It argues
that the professionalization of computer programming represented a potential
solution to the software crisis that appealed to programmers and employers
alike. The controversy that surrounded the various professional institutions that
were established in this period, however, reveals the deep divisions that existed
within the programming community about the nature of programming skill and
the future of the programming professions.

The Epilogue relates the events of the 1960s to subsequent developments in
software engineering. It suggests that thinking about the invention of this
discipline as a series of interconnected social and political negotiations, rather
than an isolated technical decision about the “one best way” to develop software
components, provides an essential link between internal developments in

information technology and their larger social and historical context.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction: Inventing the Computer Programmer

Creativity is a major attribute of technically oriented people. Look for those who like
intellectual challenge rather than interpersonal relations or managerial decision-making.
Look for the chess player, the solver of mathematical puzzles.'

“Selection of EDP Personnel,” Personnel Journal (1965)

Another striking characteristic of programmers is their disinterest in people. Compared
with other professional men, programmers dislike activities involving close personal
interaction. They prefer to work with things rather than people.?

"Vocational Interests of Computer Programmers,” Journal of Applied. Psychology (1967)

I Inventing the Computer Programmer

For almost as long as there has been software, there has been a software
crisis.> Laments about the inability of software developers to produce products
on time, within budget, and of acceptable quality and reliability have been a
staple of industry literature from the early decades of commercial computing to
the present. The “software gap” of the 1950s led to “software turmoil” in the

early 1960s and by the end of the decade had emerged as a full-blown “software

! Joseph O'Shields, “Selection of EDP Personnel,” Personnel Journal 44,9 (October 1965),
472.

? Dallis Perry and William Cannon, “Vocational Interests of Computer Programmers,”
Journal of Applied Psychology 51, 1 (1967).

* The first known use of the word “software” appears in a 1959 article by the Princeton
statistician John Tukey. See John Tukey, “The Teaching of Concrete Mathematics,”
American Mathematical Monthly 65, 1 (1958). By early 1962 Daniel McCracken was
already lamenting the “software turmoil” that threatened to “set the software art back
several years.” (“The Software Turmoil: Nine Predictions for '62,” Datamation 8, 1
[1962]). References to the “Gap in Programming Support” appear even earlier (Robert
Patrick, “The Gap in Programming Support,” Datamation7, 5 [1961]).

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 13

crisis.” Despite numerous attempts to address this crisis, either by the
introduction of new “automatic programming” technologies or the imposition of
new managerial controls on the software development process, the rhetoric of
crisis has continued to dominate discussions about the health and future of the
software industry. In the words of one industry observer, by the middle of the
1980s “the software crisis [had] become less a turning point than a way of life.”*
This chapter explores the historical construction of the software crisis as a
crisis of programming labor. It argues that many of the crucial innovations in
modern software development — high-level programming languages, structured
programming techniques, and software engineering methodologies, for example
— reflect corporate concerns about the supply, training, and management of
programmers. In their role as mediators between the technical system (the
computer) and its social environment (existing structures and practices),
computer programmers have always played a crucial role in defining what the
computer is and what it could be used for. They also served as a focus for
opposition to and criticism of the use of information technology. Much of the

rhetoric of the software crisis, for example, has focused on the character and

practices of programmers.

* John Shore, “Why I Never Met a Programmer [Could Trust,” Communications of the
ACM 31, 4 (1988).

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 From “Black Art” to Industrial Discipline

Despite their obvious importance to the history of commercial computing,
we know almost nothing about the background and practices of the average
working computer programmer. In many respects computer programmers are
the unsung heroes of the computer and information revolution. The Andrei
Ershov has gone so far as to call them “the lynchpin of the second industrial
revolution.”” And yet programmers have long complained about the low status
of their profession and its lack of public recognition.® In any case, by the end of
the 1960s there were more than three hundred thousand of these generally
anonymous programmers and systems analysts working in the United States
alone. Clearly this large and influential group of computer users did not simply
appear out of thin air to meet the burgeoning demands of corporate computer
installations. In a complex process that took several decades, and which has
probably still not yet been completed, the computer programmer had to be
painstakingly invented.

It might seem odd to talk about the invention of an occupation. After all,
invention is a word that usually reserved for machines, rather than people or
groups of people. And yet historians have long suggested that technological

innovators, including the designers of electronic computers, also invent the kind

®> A.P. Ershov, “Aesthetics and the Human Factor in Programming,” Communications of
the ACM15, 7 (July, 1972), 503.

® Daniel McCracken, “The Human Side of Computing,” Datamation7, 1 (1961), 9-10;
C.J.A., “In defense of programmers,” Datamation 13, 9 (1967); Datamation Editorial,
“Editor's Readout: The Certified Public Programmer,” Dafamation 8, 3 (1962).

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 15

of people they expect to use their innovations.” The two acts of invention are in
fact inseparable: assumptions made about who will be using a technology, how,
and for what purposes, inevitably influence its eventual design. This means that
the invention of the user, like the invention of the technology itself, is often a
highly contested social process involving conflict and negotiation. Much of the
discourse about the software crisis, for example, focuses not so much on the
software itself as on the character and practices of its user/programmers.

In the case of the electronic computer, this process of “inventing” the user
was particularly controversial. The decades of the 1950s and 1960s were a
period of rapid and fundamental changes in the technology and practice of
computing. Whereas in the early 1950s electronic computers were generally
regarded as interesting but extravagant scientific curiosities, by 1963 these
devices and their associated peripherals formed the basis of a billion-dollar
industry. By the end of the decade, more than 165,000 computers had been
installed in the United States alone, and the computer and software industries
employed several hundred thousand individuals world-wide.®* While the high-
tech appeal of electronic computing appealed to many corporate executives, few

had any idea how to effectively integrate this novel technology into their existing

7 See, for example, Thierry Bardini, Bootstrapping: Douglas Englebart, Coevolution, and
the Origins of Personal Computing (Stanford, CA: Stanford University Press, 2000), 103.
® Kenneth Flamm, Creating the computer government, industry, and high technology
(Washington, D.C: Brookings Institute, 1988), 135.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16 From “Black Art” to Industrial Discipline

social, political, and technological networks. The adoption of this expensive,
unfamiliar, and often unreliable technology posed challenging problems, both
social and technical, for even the most motivated corporate managers.

As the electronic computer moved out of the laboratory and into the
marketplace, it became an increasingly valuable sources of professional and
institutional power and authority. By virtue of their control over this powerful
new technology, computer specialists were often granted an unprecedented
degree of independence and authority by high-level managers. The systems they
developed often replaced, or at least substantially altered, the work of traditional
white-collar employees. Departmental managers, not unsurprisingly, often
resented the perceived impositions of the computer personnel, regarding them as
threats to their position and status.” They attempted to reassert control over
operational decision-making by redefining programmers as narrow specialists
and “mere technicians.” The result was a highly-charged struggle over the
proper place of the programmer in traditional occupational and professional
hierarchies.

Over the course of the 1950s and 1960s, the identity of the computer

programmer was continually invented and reinvented in response to a changing

° T. Alexander, “Computers Can't Solve Everything,” Fortune (October, 1969), 169;
Thomas Whisler, “The Impact of Information Technology on Organizational Control,” in
The Impact of Computers on Management, Charles Myers (Ed.) (Cambridge, MA: MIT
Press, 1967), 44.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 17

social and technical environment. Corporate employers preferred programmers
who were reliable, business-oriented, and who produced straightforward, easy-
to-maintain software. Computer scientists privileged mathematical training and
theoretical rigor. Others pursued professional agendas modeled after a wide
range of traditional disciplines including medicine, engineering, and accounting.
All of the major technical innovations developed in this period reflected
competing visions of what a programmer was and should be. The designers of
the FORTRAN programming language, for example, had in mind a very
different model of the programmer than did the COBOL committee. The former
was designed to allow mathematically sophisticated users to program scientific
algorithms; the latter for readability, ease-of maintenance, and machine
independence. Embedded in each of these systems of technology and practice
was a particular model of what the users of these inventions should look like.
Was the idealized computer programmer a routinized laborer in a Taylorized
“software factory” or a skilled, autonomous professional? Should programmers
base their occupational identity on the model of the engineer/scientist or the
certified public accountant? Should they emphasize craft technique or abstract
knowledge? Did they need to be college educated or simply a vocational school
graduate? Should they be male or female? The answers to each of these questions

had significant implications for the role of electronic computing — and of

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18 From “Black Art” to Industrial Discipline

computing professionals — in modern corporate and academic organizations. It
is no wonder, therefore, that they were not readily resolved in this, or for that

matter any other, period in the history of computing.

Programmers as Clerical Workers

The first clear articulation of what a programmer was and should be was
provided in the late 1940s by Herman Goldstine and John von Neumann in a
series of volumes on "Planning and Coding of Problems for an Electronic
Computing Instrument.” These volumes, which served as the principal textbooks
on the programming process at least until the early 1950s, outlined a clear
division of labor in the programming process that seems to have been based on
the practices used in programming the ENIAC. These practices were themselves
adapted from those used at the large manual computation projects at the nearby
Aberdeen Proving Grounds. In these projects, the most senior women (by this
point in time “computing” had become an almost exclusively feminine
occupation), developed elaborate “plans of computation” that were carried out
by their fellow human “computers.” Since electronic computing was envisioned

by the ENIAC developers as “nothing more than an automated form of hand

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 19

computation,” it seemed natural that similar plans could be constructed for their
electronic counterparts.’

Drawing on their experience with the ENIAC, Goldstine and von Neumann
spelled out a six-step programming process: (1) conceptualize the problem
mathematically and physically, (2) select a numerical algorithm, (3) do a
numerical analysis to determine precision requirements and evaluate potential
problems with approximation errors, (4) determine scale factors so that the
mathematical expressions stay within the fixed range of the computer
throughout the computation, (5) do the dynamic analysis to understand how the
machine will execute jumps and substitutions during the course of a
computation, and (6) do the static coding. The first five of these tasks were to be
done by the "planner” who was typically the scientific user and overwhelmingly
often was male; the sixth task was to be carried out by "coders"—almost always
female (at least in the ENIAC project). Coding was regarded as a "static" process
by Goldstine and von Neumann, one that involved writing out steps of a
computation in a form that could be read by the machine, such as punching
cards, or in the case of ENIAC in plugging cables and setting switches. Thus

there was a division of labor envisioned that gave the most skilled work to the

' David Alan Grier, “The ENIAC, the verb ‘to program’ and the Emergence of Digital
Computers,” Annals of the History of Computing 18:1 (1996), 53.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20 From “Black Art” to Industrial Discipline

high-status male scientists and the lowest skilled work to the low-status female
coders.

The use of the word “coder” in this context is significant. “Coding” implied
manual labor, and mechanical translation or rote transcription; “coders”
obviously ranked low on the intellectual and professional hierarchy. It was not
until later, that the now commonplace title of “programmer” was adopted. The
verb “to program,” with its military connotations of “to assemble” or “to
organize,” suggested a more thoughtful and system oriented activity."
Throughout the next several decades, however, programmers struggled to
distance themselves from the status (and gender) connotations suggested by
“coder.” An early manuscript version of the UNIVAC “Introduction to
Programming” manual, for example, highlighted the distinction between the

managerial “programmer” and the technical “coder”:

...In problem preparation, the detailed work may be accomplished by two
individuals. The first, who may be called the “programmer,” studies the
problem, determines the appropriate method of solution, and prepares the
flow chart. This person must be well versed in the particular field in
which the problem lies, and should also be able to fully exploit the
flexibility and versatility of the UNIVAC system. The second person,
referred to as the “coder” need only be familiar with the technique of

" Ibid.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 21

reducing the flow chart to the specific instructions, or coding, required by
the UNIVAC to solve the problem."?

By differentiating between these two tasks, one clerical and the other
analytical, the manual reinforced the Goldstine/von Neumann model of the
programmer. In this model the real business of programming was analysis: the
actual coding aspect of programming was trivial and mechanical. “Problems
must be thoroughly analyzed to determine the many factors that must be taken
into consideration,” suggested the same preliminary UNIVAC manual, but the
once this analysis had been completed, the “pattern of the [programming]
solution would be readily apparent.” Although this division of the programming
process into two distinct and unequal phases did not survive into the published
version of the UNIVAC documentation, its early inclusion highlighted the
persistence of the programmer/coder distinction.

Over the course of the next decade, however, the line between coder and
programmer became increasingly ambiguous. As the ENIAC managers and
“coders” soon realized, for example, controlling the operation of an automatic
computer was nothing like the process of hand computation, and the Moore
School “girls” were therefore responsible for defining the first state-of-the-art

methods of programming practice. Programming was a very imperfectly

2 Sperry Rand Univac, “Introduction to Programming,” Programming for the UNIVAC,
Part 1 (typewritten manuscript, dated 11 June 1949). Hagley Achives, Box 372, Accession
1825. Emphasis is mine.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22 From “Black Art” to Industrial Discipline

understood activity in these early days, and much more of the work devolved on
the coders than anticipated. To complete their coding, the coders would often
have to revisit the dynamic analysis; and with their growing skills, some
scientific users left many or all six of the programming stages to the coders. In
order to debug their programs and to distinguish hardware glitches from
software errors, they developed an intimate knowledge of the ENTAC
machinery. “Since we knew both the application and the machine,” claimed
ENIAC programmer Betty Jean Jennings, “we learned to diagnose troubles as
well as, if not better than, the engineers.””* The model of the programmer as
“coder” — and programming as unskilled clerical labor — failed to correspond to
the reality imposed by the technology. The professional and intellectual
opportunities offered by a programming career became increasingly apparent to
many of the male scientists and engineers on the ENIAC and other hardware
projects. As a result, programming began to be “reinvented” as an legitimate and

high-status discipline, at least within the confines of the computing community.

The “Black Art” of Programming
Although they continued to struggle to with questions of status and identity,
by the end of the 1950s computer programmers were generally considered to be

anything but routine clerical workers. A 1959 Price-Waterhouse report on

¥ W. Barkley Fritz, "The Women of Eniac," Annals of the History of Computing 18, 3
(1996), 20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 23

“Business Experience with Electronic Computers” argued that “high quality
individuals are the key to top grade programming. Why? Purely and simply
because much of the work involved is exacting and difficult enough to require
real intellectual ability and above average personal characteristics.”* In fact, the
study’s authors suggested, “the term 'programmer’ is ... unfortunate since it
seems to indicate that the work is largely machine oriented when this is not at all
the case ... training in systems analysis and design is as important to a
programmer as training in machine coding techniques; it may well become
increasingly important as systems get more complex and coding becomes more
automatic.”” Although Goldstine and von Neumann had envisioned a clear
division of labor between “planners” and “coders,” in reality this boundary
became increasingly indistinct. As Willis Ware indicated in a 1965 guest editorial

in Dafamation,

..it is clear that only a part - perhaps a small part, at that - of the
programming process is involved with actually using a language for
writing routines. Much of the programming process involves intellectual
activity, mathematical investigation, discussions between people, etc.
Very often, individuals who are trained as programmers actually do the
early stages of the programming process but they may very well write no
routines....One man who participated in the SAGE initial programming

*B. Conway, J. Gibbons, and D.E. Watts, Business experience with electronic computers,
a synthesis of what has been learned from electronic data processing installations (New
York: Price Waterhouse, 1959), 81.

5 Ibid, 89-90.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24 From “Black Art” to Industrial Discipline

has estimated...that one half of the total programming man-hours...was for
analysis and definition of the problem.

The clear implication of recent experience, in both scientific computation and
business data processing, was that programmers should be given more
responsibility for design and analysis, that the idea that coding could be left to
less experienced or lower-grade personnel was “erroneous,” and that “the
human element is crucial in programming.”"

This new-found emphasis on programmer skill and creativity led to a subtle
redefinition of the nature and causes of the software crisis. In the early part of the
1950s the solution to the “software turmoil” was believed to be the mass-
production of new programmer trainees. By the beginning of the 1960s the
problem had become the more subtle matter of programmer personnel selection:
of “finding - and keeping - 'the right people'”."® Indeed, by the middle of the
1950s, a new model for programming had emerged that emphasized individual
expertise and creativity. During this period computers remained a primarily
scientific and military technology, and computer programming as a discipline
retained a close association with the practice of mathematics. The limitations of

early hardware devices often meant that a simple programming problem could

quickly turn into a research excursion into algorithm theory and numerical

16 Willis Ware, “As I See It: A Guest Editorial,” Datamation11, 5 (1965), 27.

' Conway, Business experience with electronic computers, 90.

18 Robert Gordon, “Personnel Selection ,” in Fred Gruenberger and Stanley Naftaly, eds.,
Data Processing. Practically Speaking (Los Angeles: Data Processing Digest, 1967), 87-88.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 25

analysis. Computer programmers developed a reputation for creativity and
ingenuity. Contemporary storage devices were so slow and had such little
capacity that programmers had to develop great skill and craft knowledge to fit
their programs into the available memory space. As John Backus (the IBM
researcher best known as the inventor of the FORTRAN programming language)
would later describe the situation, “programming in the 1950s was a black art, a
private arcane matter...each problem required a unique beginning at square one,
and the success of a program depended primarily on the programmer’s private
techniques and inventions.""’

This reliance on individual creativity and clever “work-arounds” created the
impression that programming was indeed more of an art than a science. This
notion was reinforced by a series of aptitude tests and personality profiles that
suggested that computer programmers, like chess masters or virtuoso musicians,
were endowed with a uniquely creative ability. Great disparities were
discovered between the productivity of individual programmers. One well-
known IBM study determined that truly excellent programmers were twenty-six
times more efficient that that produced by their merely average colleagues.”

Despite the serious methodological flaws that compromised this particular study

¥ Nick Metropolis, . Howlett, and Gian-Carlo Rota, eds., 4 history of computing in the
twentieth century a collection of essays (New York: Academic Press, 1980), p. 126.

% Hal Sackman, W.J. Erickson, and E.E. Grant, “Exploratory Experimental Studies
Comparing Onling and Offline Programming Performance,” Communications of the
ACM11, 1 (1968).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26 From “Black Art” to Industrial Discipline

(including a sample population of only twelve individuals), the 26:1 performance
ratio quickly became part of the standard lore of the industry. Dr. E.E. David of
Bell Telephone Laboratories spoke for many when he argued that large software
projects could never be managed effectively, because “the vast range of
programmer performance indicated earlier may mean that it is difficult to obtain
better size-performance software using machine code written by an army of
programmers of lesser average caliber.”

In this new model of the “art of programming,” creative programmers were
a highly valued commodity, and were often granted a great deal of personal
authority and professional autonomy. One industry observer went so far as to
argue that the “major managerial task is finding - and keeping - “the right
people”: with the right people, all problems vanish.”? Programmers were
selected for their intellectual gifts and aptitudes, rather than their business
knowledge or managerial savvy. “Look for those who like intellectual challenge
rather than interpersonal relations or managerial decision-making. Look for the
chess player, the solver of mathematical puzzles.”? Skilled programmers were

thought to be effectively irreplaceable, and were treated and compensated

accordingly.

2 Peter Naur, Brian Randall, and J.N. Buxton, ed., Software engineering Proceedings of
the NATO conferences (New York: Petrocelli/Carter, 1976), 33.

2 Gordon, “Personnel Selection ,” 88.

2 Joseph O'Shields, “Selection of EDP Personnel,” Personnel Journal 44, 9 (October
1965), 472.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 27

il The Labor Crisis in Programming

By the beginning of the 1960s developments occurred in both the technical
and social environment of electronic computing that prompted new efforts to
“reinvent” the programmer. Commercial manufacturers such as IBM began
producing general purpose computers that were relatively reliable, affordable,
and easy to program. They also provided the services and peripherals necessary
to integrate the electronic computer into existing systems and processes. As the
computer became more of a tool for business than a scientific instrument, the
nature of its use — and of its primary user, the computer programmer — changed
dramatically. The projects that business programmers worked on tended to be
larger, more highly structured, and less mathematical than those involved in
scientific computing. The needs of business demanded a whole new breed of
programmers, and plenty of them.

As the market for commercial computers changed and expanded, the
demand for qualified programmers increased accordingly. In 1962 the editors of
Datamation declared that “first on anyone's checklist of professional problems is
the manpower shortage of both trained and even untrained programmers,
operators, logical designers and engineers in a variety of flavors.”** Five years

later, “one of the prime areas of concern” to electronic data processing (EDP)

* Datamation Editorial, “Editor's Readout: A Long View of a Myopic Problem,”
Datamation 8, 5 (1962), 21.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28 From “Black Art” to Industrial Discipline

managers was still “the shortage of capable programmers,” a shortage which had
“profound implications, not only for the computer industry as it is now, but for
how it can be in the future.”” One widely quoted study from the late 1960s
noted that although there were already 100,000 programmers working in the
United States, there was an immediate need for at least 50,000 more.?
“Competition for programmers has driven salaries up so fast,” warned a
contemporary article in Fortune magazine, “that programming has become
probably the country’s highest paid technological occupation...Even so, some
companies can’t find experienced programmers at any price.””

Faced with an growing shortage of skilled programmers, employers were
forced to lower their hiring standards. Many large software corporations in this
period underwrote expensive internal training programs, “not because they want
to do it, but because they have found it to be an absolute necessary adjunct to the
operation of their business.”? Vocational schools sprung up all over the country
promising high salaries and dazzling career opportunities. An article in
Cosmopolitan Magazine urged Helen Gurley Brown’s “Cosmo Girls” to go out

and become “computer girls” making $15,000 a year as programmers. Atone

5 Richard Tanaka, “Fee or Free Software,” Datamation 13, 10 (1967), 205-206.

% Quoted in Edward Markham, “Selecting a Private EDP School,” Datamation 14, 5
(1968).

¥ Gene Bylinsky, “Help Wanted: 50,000 Programmers,” Fortune (March, 1967), p. 141.
James Saxon, “Programming Training: A Workable Approach,” Datamation9, 12
(1963), 48.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 29

point the so-called “population problem” in software became so desperate that
service bureaus in New York farmed out programming work to inmates at the
nearby Sing-Sing prison, promising them permanent positions pending their
release!”

The influx of new programmer trainees and vocational school graduates into
the software labor market failed to alleviate the acute shortage of programmers
that plagued the industry, however. In fact, one study by the Association for
Computing Machinery’s Special Interest Group on Computer Personnel Research
(SIGCPR) warned of a growing oversupply of a certain undesirable species of
software specialist: “The ranks of the computer world are being swelled by
growing hordes of programmers, systems analysts and related personnel.
Educational, performance and professional standards are virtually nonexistent
and confusion growths rampant in selecting, training, and assigning people to do
jobs.”** Employers and programmers alike were anxious to produce better
standards for training and curriculum, but it was unclear to whom they should
turn for guidance.

The obvious candidates for establishing standards for programming
competency were the universities. Although computer science in the 1950s was

not an established discipline, many of the larger research universities were

¥ News Brief, “First Programmer Class at Sing Sing Graduates,” Dafamation 14, 6 (1968).
% H. Sackman, “Conference on Personnel Research,” Datamation 14, 7 (1968).

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 From “Black Art” to Industrial Discipline

beginning to offer graduate training in computer-related specialties. But since
academic computer scientists were struggling in this period to define a unique
intellectual identity for their discipline, they focused on developing a theoretical
basis for their discipline, rather than providing training in practical techniques.

As computing became more business-oriented the mismatch between
university training and the needs of employers became even more apparent.
Many corporations saw these university programs — most of which focused on
formal logic and numerical analysis — as being increasingly out-of-touch with the
needs of their business. As the computer scientist Richard Hamming pointed out
in his 1968 Turing Award Lecture, “Their experience is that graduates in our
programs seem to be mainly interested in playing games, making fancy
programs that really do not work, writing trick programs, etc., and are unable to
discipline their own efforts so that what they say they will do gets done on time
and in practical form.”*'

Hamming was hardly the only member of the computing community to find
fault with the increasingly theoretical focus of contemporary computer science.

As early as 1958 a Bureau of Labor report on 7he Effects of Electronic Computers

on the Employment of Clerical Workers had noted a growing sense of corporate

3 Richard Hamming, “One Man's View of Computer Science,” chap. in ACM Turing
Award Lectures: The First Twenty Years, 1966-19585 (New York: ACM Press, 1987). The
Turing Award was one of the first, and most prestigious, academic awards granted in
computer science.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 31

disillusionment with academic computer science: “Many employers no longer
stress a strong background in mathematics for programming of business or other
mass data if candidates can demonstrate an aptitude for the work. Companies
have been filling most positions in this new occupation by selecting employees
familiar with the subject matter and giving them training in programming
work.”?* Academic computer scientists sought to reinvent the programmer in
the model of the research scientist; corporate employers resisted what they saw
as “a sort of holier than thou academic intellectual sort of enterprise.”* The
tension between these competing visions of what a programmer should be only
served to exacerbate the perceived shortage of “qualified” programmers.*

In any case, the relatively small number of colleges and universities that did
offer some form of practical programming experience were unable to provide
trained programmers in anywhere near the quantities required by industry. Asa
result, aspiring software personnel often pursued alternative forms of vocational
training. Some were recruited for in-house instruction programs provided by
their employers. IBM provided programming training services to many of its

clients. Others enrolled in the numerous private EDP training schools that began

2William Paschell, Automation and employment opportunities for office workers; a
report on the effect of electronic computers on employment of clerical workers (Bureau
of Labor Statistics, 1958), 11.

¥ Rand Symposium, 1969. Charles Babbage Institute Archives, CBI 78, Box 3, F1d. 4.

3 This seems to be as true in the 1990s as it was in the 1960s. See W. Gibbs, “Software's
Chronic Crisis,” Scientific American (September 1994), 86.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32 From “Black Art” to Industrial Discipline

to appear in the mid-1960s. These schools were generally profit-oriented
enterprises more interested in quantity than quality. For many of them the “only
meaningful entrance requirements are a high school diploma, 18 years of
age...and the ability to pay.”* The more legitimate schools oriented their
curricula towards the requirements of industry. The vocational schools suffered
from many of the same problems that plagued the universities: a shortage of
experienced instructors, the lack of established standards and curricula, and
general uncertainty about what skills and aptitudes made for a qualified
programmer. “Could you answer for me the question as to what in the eyes of
industry constitutes a 'qualified’ programmer?” pleaded one Datamation reader.
“What education, experience, etc. are considered to satisfy the 'qualified’
status?”* The problem was not only that the universities and vocational schools
could not provide the type of educational experience that interested corporate
employers; the real issue was that most employers were simply not at all sure

what they were looking for.

lil. Programmers as Professionals

Many software personnel were keenly aware of the crisis of labor and the

tension it was producing in their industry and profession, as well as in their own

¥ Edward Markham, “EDP Schools - An Inside View,” Datamation 14, 4 (1968), 22. The
scandalous conditions of EDP schools were a frequent topic in the industry literature,
and some companies imposed strict “no EDP school graduate” policies.

% John Callahan, “Letter to the editor,” Datamation7, 3 (1961), 7.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 33

individual careers. Although computer specialists in general were appreciative
of the short-term benefits of the software labor shortage (above average salaries
and plentiful opportunities for occupational mobility), many believed that a
continued crisis threatened the long-term stability and reputation of their
industry and profession.

Concerns about the future of their occupation weighed heavily on the minds
of many programmers. What was the appropriate career path for a software
worker? “There is a tendency,” suggested the ACM SIGCPR, “for programming
to be a 'dead-end’ profession for many individuals, who, no matter how good
they are as programmers, will never make the transition into a supervisory slot.
And, in too many instances this is the only road to advancement.””’ Whereas
traditional engineers were often able (and in fact expected) to climb the corporate
ladder into management positions, programmers were often denied this
opportunity.® It was not clear to many corporate employers how the skills
possessed by programmers would map onto the skills required for management.
Part of the problem was the lack of a uniform programmer “profile.” There was
no “typical” programmer. The educational and occupational experience of

programmers varied dramatically from individual to individual and workplace

% Datamation Report, “The Computer Personnel Research Group,” Datamation9, 1
(1963), 38.

% Louis Kaufman and Richard Smith, “Let's Get Computer Personnel on the
Management Team,” Training and Development Journal (December, 1966), 25-29.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34 From “Black Art” to Industrial Discipline

to workplace. There was a vast gulf, for example, “between the systems
programmers - who must tame the beast the computer designers build - and the
applications programmers - who must then train the tamed beast to perform for
the users.”” It was possible for two programmers sitting side by side — and
managed by the same data processing manager and hired by the same personnel
administrator - to be working on entirely different types of projects each
requiring distinctly different sets of skills and experience.

Many of the job advertisements in the late 1960s and early 1970s reflected the
concerns that programmers had regarding their occupational future and
longevity. “At Xerox, we look at programmers...and see managers.”* “Working
your way towards obsolescence? At MITRE professional growth is limited only
by your ability.”** “Is your programming career in a closed loop? Create a loop
exit for yourself at [the Bendix Corporation].”* Like their counterparts in the
1990s, programmers in this period were worried about burning out by age forty.
Corporations struggled to retain the employees in whom they had invested so

much time and money in recruiting and training. The average annual

¥ Christopher Shaw, “Programming Schisms,” Datamation 8,9 (1962), 32.

* Xerox Corp., “At Xerox, we look at programmers and see managers (ad),” Datamation
14, 4 (1968).

1 Mitre Corp., “Are You Working Your Way Toward Obsolescence (ad),” Datamation
12, 6 (1966).

“ Bendix Computers, “Is Your Programming Career in a Closed Loop (ad)?” Datamation
8,9 (1962).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer

35

86

is your programming career in a closed loop?

Have you programmed your career into a corner? Create a Icop exit for
yourself .. .apply for one of many openings in the area of AUTOMATIC
PROGRAMMING SYSTEMS, MONITORS and EXECUTIVE SYSTEMS,
SCIENTIFIC APPLICATIONS and WRITERS at Bendix Computer Division.

Bendix Computer has been a leading manufacturer of digital computing
systems fcr L0 years. .. has long enjoyed a reputation for leadership. Grow-
ing acceptance of the Bendix G-20 and new military computer systems has
created excsptional opportunities. The resulting combination of leadership
and growwth will help you out of that iterative loop...and into a new open-

ended career.

Check it cut for yourself. Call or write: Mr. William Keefer, Manager,
Professional Staff Relations, Bendix Computer Division, S630 Arbor Vitae
Street, LLos Angeles 45, California.

Bendix Computer Division I

cssrsast ok

CIRCLE 83 ON READRER CARD

DRTAMATION

Figure 0.1: Advertisement for Bendix Computing, c. 1967.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36 From “Black Art” to Industrial Discipline

turnover rate in the industry approached 25%, and at one edp installation
turnover reached more than 10% per month. Poor management, long hours, and
easy mobility “too often made an already mobile workforce absolutely liquid.”*
One problem was a labor market that provided plentiful opportunities for
experienced developers: “Once a man is taught the skills, he may be hard to
keep. Companies that use their computers for unromantic commercial purposes
risk losing their programmers to more glamorous fields such as space
exploration.”* Managers attributed excessive employee turnover to the tight
labor market, unscrupulous “body snatchers and other recruiting vultures,”*
and the inherent fickleness of over-paid, prima donna programmers. However, a
1971 study of job satisfaction and computer specialists suggested that the
majority of programmers valued the psychological benefits of their work - in
terms of self-development, recognition, and responsibility — over its financial

rewards.* What programmers disliked was the imposition of the “ultra-strict

 “EDP's Wailing Wall,” Datamation 13,7 (1967), 21. While this high level of turnover
was no doubt disruptive, it hardly compares to that experienced in certain traditional
manufacturing industries. During the Ford Motor Company’s ‘labor crisis’ of 1914,
annual employee turnover reached 380%. Turnover in the contemporary software
industry still averages 19% (based on the 11" Annual Salary Survey, Computerworld,
September 1, 1997).

* Bylinsky, “Help Wanted: 50,000 Programmers,” 168.

%5 John Fike, “Vultures Indeed,” Datamation 13,5 (1967), 12.

“ Enid Mumford, Job Satisfaction: A study of computer specialists (London: Longman
Group Limited, 1972), 93.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 37

industrial engineering and accounting type controls” aimed at limiting their
professional autonomy.*

Despite their concerns about the status and future of their profession,
software developers in this period seemed to hold the position of power in the
labor/management relationship. Programmers were able to vote with their feet
on many crucial aspects of the terms and condition of their employment. Large
government projects had difficulty attracting qualified programmers, in part
because of salary considerations but mostly because they were seen as boring
and rigid. As one contemporary organizational sociologist suggested,
programmers appeared to be “one group of specialists whose work seems ideally
structured to provide job satisfaction.”*® What is curious, however, is that
programmers on the whole do not seem to have translated their monopoly of the
software labor market into stable long-term career prospects. They were unable
to establish many of the institutional structures and supports traditionally
associated with the professions. Although starting salaries were high and
individual programmers were able to move with relative ease horizontally

throughout the industry, there were precious few opportunities for vertical

“” Robert Head, “Controlling Programming Costs,” Datamation 13,7 (1967), 141.
8 Mumford, Job Satisfaction, 175.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38 From “Black Art” to Industrial Discipline

advancement.* Many programmers worried about becoming obsolete, and felt
pressure to constantly upgrade their technical skills.* Most significantly,
however, they faced the open hostility of managers. It was no secret that many
corporate managers in this period were only too eager to impose new
technologies and development methodologies that promised to eliminate what

they saw as a dangerous dependency on programmer labor.”

1v. Programmers and Managers

By the end of the 1960s new development elevated the debate over
programumer training and recruitment to the level of national crisis. In the first
half of the decade innovations in transistor and integrated circuit technology had
increased the memory size and processor speed of computers by a factor of ten,
providing an effective performance improvement of almost a hundred. The
falling cost of hardware allowed computers to be used for more and larger
applications, which in turn required larger and more complex software. As the
scale of software projects expanded, they became increasingly difficult to
supervise and control. They also became much more expensive. Large software

development projects acquired a reputation for being behind-schedule, over-

“ James Jenks, “Starting Salaries of Engineers are Deceptively High,” Datamation 13,1
(1967), 13.

% Datamation Editorial, “Learning a Trade,” Dafamation 12, 10 (1966), 21.

*! Avner Porat and James Vaughan, “Computer Personnel: The New Theocracy - or
Industrial Carpetbaggers,” Personnel Journal/48, 6 (1968), 540-543.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 39

budget, and bug-ridden. By 1968 the language of crisis dominated all
discussions about the health and future of the industry.

The perception of that a software crisis was imminent focused unwelcome
attention on programmers and their practices. Faced with rising software costs,
and threatened by the unprecedented degree of autonomy that corporate
executives seemed to grant to “computer people,” many corporate managers
began to reevaluate their largely hands-off policies towards programmer
management. Whereas in the 1950s computer programming was widely
considered to be a uniquely creative activity — and therefore almost impossible to
manage using conventional methods — by the end of the 1960s new perspectives
on these problems began to appear in the industry literature. An influential
report by the venerable management consulting firm of McKinsey & Company
suggested that the real reason that most data processing installations were
unprofitable is that "many otherwise effective top managements...have
abdicated control to staff specialists - good technicians who have neither the
operation experience to know the jobs that need doing nor the authority to get
them done right.” > The same qualities that had previously been thought
essential indicators of programming ability, such as creativity and a mild degree

of personal eccentricity, now began to be perceived as being merely

2 McKinsey & Company, “Unlocking the Computer's Profit Potential,” Computers &
Automation (April 1969), 33.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40 From “Black Art” to Industrial Discipline

unprofessional. As part of their rhetorical construction of the software crisis as a
problem of programmer management, corporate managers often accused
programmers of lacking professional standards and loyalties: “... too frequently
these people [programmers], while exhibiting excellent technical skills, are non-
professional in every other aspect of their work.”* Many of the technological,
managerial, and economic woes of the software industry became wrapped up in
the crisis of software management.

There is no lack of evidence of pervasive management dissatisfaction with
both programmers and the programming process. We have already described
the enormous expenses incurred in the training, recruitment, and retention of
software specialists. And since labor costs comprised almost the entire cost of
any software development project, any increases in programmer efficiency or
reductions in personnel immediately impacted the bottom line. In addition,
software specialists had acquired a negative reputation in the eyes of corporate
managers as being intractable and individualistic. According to one unflattering
depiction, a programmer “doesn't want to be questioned, doesn't want to
account accurately and in detail for his time...He doesn't want to be

supervised...doesn't want to supervise. Says he wants responsibilities, but gripes

> Malcolm Gotterer, “The Impact of Professionalization Efforts on the Computer
Manager,” chap. in Proceedings of 1971 ACM Annual Conference (New York:
Association for Computing Machinery, 1971), 368.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 41

if they're assigned to him...The computer was acquired for him, not for
operating results...It's not a pretty profile...”* A widely quoted psychological
study that identified as a “striking characteristic of programmers...their
disinterest in people,” reinforced the managers' contention that programmers
were insufficiently concerned with the larger interests of the company.® The
apparent unwillingness of programmers to abandon the “black art of
programming” for the “science” of software engineering was interpreted as a
deliberate affront to managerial authority: “The technologists more closely
identified with the digital computer have been the most arrogant in their willful
disregard of the nature of the manager's job. These technicians have clothed
themselves in the garb of the arcane wherever they could do so, thus alienating
those whom they would serve.”* The reinterpretation of the software crisis as a
product of poor programming technique and insufficient managerial controls
suggested that the software industry, like the more traditional manufacturing
industries of the early twentieth century, was drastically in need of a managerial

and technical overhaul.

> Datamation Editorial, “Checklist for Oblivion,” Dafamation 10, 9 (1964), 23.
% Perry and Cannon, “Vocational Interests of Computer Programmers.”
% Datamation Editorial (1966), 22.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42 From “Black Art” to Industrial Discipline

V. Engineering a Solution

There are numerous other ways in which the highly contested nature of the
“invention” of the programmer was reflected in this period. The ongoing
controversy about the content of computer science curricula, periodic scandals
about the sharp practices of fly-by-night “EDP training schools,” the seemingly
endless debates about the relative merits of various programming languages - all
point to a self-conscious concern on the part of programmers about their own
ambiguous occupational identity. The great emphasis that contemporary
observers of the software crisis place on issues of professional development
argue for the historical significance of this struggle for status and autonomy.

In the late 1960s, in the wake of 1968 NATO Conference, a new model for
situating the professional programmer was invented. Software engineering
emerged as a compelling solution to the software crisis in part because it was
flexible enough to appeal to a wide variety of computing practitioners. The
ambiguity of concepts such as “professionalism,” “engineering discipline,” and
“efficiency” allowed competing interests to participate in a shared discourse that
nevertheless enabled them to pursue vastly different personal and professional
agendas. Industry managers adopted a definition of “professionalism” that

provided for educational and certification standards, a tightly disciplined

workforce, and increased corporate loyalty. Computer manufacturers looked to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inventing the Computer Programmer 43

“engineering discipline” as means of countering charges of incompetence and
cost-inefficiency. Academic computer scientists preferred a highly formalized
approach to software engineering that was both intellectually respectable and
theoretically rigorous. Working programmers tended to focus on the more
personal aspects of professional accomplishment, including autonomy, status,
and career longevity. The software engineering model seemed to offer
something to everyone: standards, quality, academic respectability, status and
autonomy.

By considering the software engineering movement in terms of a larger
process of professional development, we can better understand why it succeeded
(on a rhetorical level, at least, if not in actual practice) were other systems and
methodologies have failed miserably. Thinking about the invention of a
discipline as a series of interconnected social and political negotiations, rather
than an isolated technical decision about the “one best way” to develop software
components, provides an essential link between internal developments in

information technology and their larger social and historical context.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter One: Programming as Technology and Practice

However, in the present crisis, considerably increased attention is being given to the
development of highly polished automatic programming languages and systems,
especially along the lines of source language compilers. Very sophisticated assembly
systems, debugging systems, operating systems, simulators and translators are being
developed to meet an ever-mounting need for better tools.!

"Trends in Programming Concepts,” Datamation (1961)

Is a language really going to solve this problem? Do we really design languages for use
by what we might call professional programmers or are we designing them for use by
some sub-human species in order to get around training and having good
programmers? Is a language ever going to get around the training and having good
programmers?”

RAND Symposium on Programming Languages (1962)

I Automatic Programmers

The first commercial electronic digital computers became available in the
early 1950s. For a short period the focus of most manufacturers was on the
development of innovative hardware. Most of the users of these early computers
were large and technically sophisticated corporations and government agencies.
In the middle of the decade, however, users and manufacturers alike became
increasingly concerned with the rising cost of software development. By the

beginning of the 1960s, the origins of “software turmoil” that would soon

! Ascher Opler, “Trends in Programming Concepts,” Datamation7, 1 (1961):13-14.
2 RAND Symposium, “On Programming Languages, Part I,” Datamation 8, 10 (1962): 29-
30.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 45

become a full-blown software crisis were readily apparent.®> As larger and more
ambitious software projects were attempted, and the shortage of experienced
programmers became more pronounced, industry managers began to look for
ways to reduce costs by simplifying the programming process. A number of
potential solutions were proposed: the use of aptitude tests and personnel
profiles to identify the truly gifted “superprogrammers;” updated training
standards and computer science curricula; and new management methods that
would allow for the use of less-skilled laborers. The most popular and widely
adopted solution, however, was the development of “automatic programming”
technologies. These new tools promised to “eliminate the middleman” by
allowing users to program their computers directly, without the need for
expensive programming talent.* The computer would program itself.

Over the course of the next several decades, hundreds of automatic
programming systems and languages would be developed. Some of these were
special purpose languages specifically designed for very limited problem
domains. Others were academic exercises intended to explore new theories of
computer science. Most of these systems, however, were designed explicitly as a

means of addressing the burgeoning software crisis, either by eliminating the

3 See Daniel McCracken, “The Software Turmoil: Nine Predictions for '62,” Datamation
8, 1 (1962); Robert Patrick, “The Gap in Programming Support,” Datamation7, 5 (1961).
* RAND Symposium, “On Programming Languages, Part I,” Datamation 8, 11 (1962);
Fred Gruenberger and Stanley Naftaly, eds., Data Processing. Practically Speaking (Los
Angeles: Data Processing Digest, 1967), 85.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46 From “Black Art” to Industrial Discipline

need for skilled programmers or as a “means of replacing the idiosyncratic
‘artistic” ethos that has long governed software writing with a more efficient,
cost-effective engineering mind-set.”” For many traditional managers in this
period, the optimal solution to a troublesome manufacturing problem was
automation. Automatic programmers would constitute a rational “software
factory” that would reduce costs, improve efficiency, and eliminate quality
problems.

Despite their associations with deskilling and routinization, automatic
programming systems could also work to the benefit of occupational
programmers and academic computer scientists. High-level programming
promised to reduce the tedium associated with machine coding, and allowed
programmers to focus on more system-oriented — and high status — tasks such as
analysis and design. Language design and development served as a focus for
productive theoretical research, and helped establish computer science as a
legitimate academic discipline. And automatic programming systems never did
succeed in eliminating the need for skilled programmers. In many ways, they
contributed to the elevation of the profession, rather than the reverse, as was

originally intended by some and feared by others.

® David Morrison, “Software Crisis,” Defense 21, 2 (1989), 72.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 47

In order to understand why automatic programming languages were such
an appealing solution to the software crisis, as well as why they apparently had
so little effect on the outcome or severity of the crisis, it is essential to consider
these languages as parts of larger social and technological systems. This chapter
will describe the emergence of programming languages as a means of managing
the complexity of the programming process. It will trace the development of
several of the most prominent automatic programming languages, particularly
FORTRAN and COBOL, and will situate these technologies in their appropriate
historical context. Finally, it will explore the significance of these technologies as
potential solutions to the ongoing software crisis of the late 1960s and early

1970s.

Assemblers, Compilers, and the Origins of the Sub-Routine

At the heart of all every “automatic programming” system was the notion
that computer could be used, at least in certain limited situations, to generate the
machine code required to run itself or other computers. This was an idea of great
practical appeal: although programming was increasingly seen as legitimate and
challenging intellectual activity, the actual coding of a program still involved
tedious and painstaking clerical work. For example, the single instruction to
“Add the short number in memory location 25,” when written out in the

machine code understood by most computers, was stored as a binary number

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48 From “Black Art” to Industrial Discipline

such as 111000000000110010. This binary notation was obviously difficult for
humans to remember and manipulate. As early as 1948, researchers at
Cambridge University began working on a system to represent the same
instruction in a more comprehensible format. The same instruction to “Add the
short number in memory location 25,” could be written out as A 25 S, where A
stood for “add,” 25 was the decimal address of the memory location, and S
indicated that a “short” number was to be used.® A Cambridge Ph.D. student
named David Wheeler wrote a small program called “Initial Orders” that
automatically translated this symbolic notation into the binary machine code
required by the computer.

The focus of early attempts to develop automatic programming utilities was
on eliminating the more unpleasant aspects of computer coding. Although in
theory the actual process of programming was relatively straightforward, in
practice it was quite difficult and time-consuming. A single error in any one of a
thousand instructions could cause an entire program to fail. Simply getting a
program to work properly often involved hours or days of laborious effort. As
another Cambridge researcher, Maurice Wilkes would later vividly recall: “It had
not occurred to me that there was going to be any difficulty about getting

programs working. And it was with somewhat of a shock that I realized that for

® This example comes from Martin Campbell-Kelly and William Aspray, Computer: A
History of the Information Machine (New York: Basic Books, 1996), 182.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 49

the rest of my life I was going to spend a good deal of my time finding mistakes
that I had made in my programs.””

These errors, or “bugs” as they soon came to be known, were often
introduced in the process of transcribing or reusing code fragments. Wilkes and
others soon realized that there was a great deal of code that was common to
different programs — a set of instructions to calculate the sine function, for
example. In addition to assigning his student David Wheeler to the development
of the “Initial Orders” program, Wilkes set him to the task of assembling a
library of such common “subroutines.” This method of reusing previously
existing code became one of the most powerful techniques available for
increasingly programmer efficiency. The publication in 1951 of the first textbook
on the Preparation of Programs for an Electronic Digital Computerby Wilkes,
Wheeler, and Cambridge colleague Stanley Gill helped disseminate these ideas
throughout the nascent programming community.®

While Wilkes, Wheeler and Gill were refining their notions of a subroutine
library, programmers in the United States were developing their own techniques
for eliminating some of the tedium associated with coding. In 1949 John

Mauchly of Univac created his “Short Order Code” for the BINAC computer.

7H.S. Tropp, “ACM's 20th Anniversary: 30 August 1967,” Annals of the History of
Computing 9, 3 (1988), 269.

® Maurice Wilkes, David Wheeler, and Stanley Gill, Preparation of Programs for an
Electronic Digital Computer (Reading, MA: Addison-Wesley, 1951).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50 From “Black Art” to Industrial Discipline

The Short Order Code allowed Mauchly to directly enter equations into the
BINAC using a fairly conventional algebraic notation. The system did not
actually produce program code, however: it was an interpretative system that
merely called up predefined subroutines and displayed the result. Nevertheless,
the Short Order Code represented a considerable improvement over the standard
binary instruction set.

In 1951 Grace Hopper, another Univac employee, wrote the first automatic
program “compiler.” Although Hopper, like many other programmers, had
benefited from the development of a subroutine library, she also perceived the
limitations associated with its use. In order to be widely applicable, subroutines
had to be written as generically as possible. They all started at line 0 and were
numbered sequentially from there. They also used a standard set of register
addresses. In order to make use of a subroutine, a programmer had to both copy
the routine code exactly and make the necessary adjustments to the register
addresses by adding an offset appropriate to the particular program at hand.
And, as Hopper was later fond of asserting, programmers were both “lousy
adders” and “lousy copyists!”® The process of utilizing the subroutine code
almost inevitably added to the number of errors that eventually had to be

“debugged.”

® Richard Wexelblat, ed., History of programming languages (New York: Academic
Press, 1981), 10.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 51

To avoid the problems associated with manually copying and manipulating
subroutine libraries, Hopper developed a system to automatically gather
subroutine code and make the appropriate address adjustments. The system
then “compiled” the subroutines into a complete machine program. Her A-0
compiler dramatically reduced the time required to put together a working
application. In 1952 she extended the language to include a simpler mnemonic
interface. For example, the mathematical statement X + Y = Z could be written as
ADD 00X 00Y 00Z. Multiplying Z by T to give W was MUL 00Z 00T 00W. The
combination of an algebraic-language interface and a subroutine compiler
became the basis for almost all modern programming languages. By the end of
1953 the A-2 compiler, as it was then known, was in use at the Army Map
Service, the Air Controller, Livermore Laboratories, New York University, the
Bureau of Ships, and the David Taylor Model Basin. Although it would take
some time before automatic programming systems were universally adopted, by
the middle of the 1950s the technology was well on its way to becoming an

essential element of programming practice.

il The Tower of Babel

Over the course of the next several decades, more than a thousand code
assemblers, programming languages, and other automatic programming systems

were developed in the United States alone. Understanding how these systems

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52 From “Black Art” to Industrial Discipline

were used, how and to whom they were marketed, and why there were so many
of them is a crucial aspect of the history of the programming professions.
Automatic programming languages were the first, and perhaps the most
popular, response to the burgeoning software crisis of the late 1950s and early
1960s. In many ways the entire history of computer programming — both social
and technical — has been defined by the search for a “silver bullet” capable of
slaying what Frederick Brooks famously referred to as the werewolf of “missed

10 The most obvious solution to

schedules, blown budgets, and flawed products.
what was often perceived to be a technical problem was, not surprisingly, the
development of better technology.

Automatic programming languages were an appealing solution to the
software crisis for a number of reasons. Computer manufacturers were
interested in making software development as straightforward and inexpensive
as possible. After all, as an early introduction to programming on the UNIVAC
reminded pointedly, “the sale and acceptance of these machines is, to some

extent, related to the ease with which they can be programmed. As a result, a

great deal of research has been done, or is being done, to make programming

10 Erederick P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering,” IEEE Computer, 20,4 (1987), 10-19.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 53

simpler and more understandable...”! Advertisements for early automatic
programming systems often made outrageous and unsubstantiated claims about
the ability of their systems to simplify the programming process.’? In many cases
they were specifically marketed as a replacement for human programmers. Fred
Gruenberger noted this tendency as early as 1962 in a widely disseminated

transcript of a RAND Symposium on Programming Languages:

You know, I've never seen a hot dog language come out yet in the last 14
years - beginning with Mrs. Hopper's A-O compiler...that didn't have tied
to it the claim in its brochure that this one will eliminate all programmers.
The last one we got was just three days ago from General Electric (making
the same claim for the G-WIZ compiler) that this one will eliminate
programmers. Managers can now do their own programming; engineers
can do their own programming, etc. As always, the claim seems to be
made that programmers are not needed anymore."”

Advertisements for these new automatic programming technologies, which
appeared in management-oriented publications such as Business Week and the
Wall Street Journal rather than Datamation or the Communications of the ACM,
were clearly aimed at a pressing concern: the rising costs associated with finding
and recruiting talented programming personnel. This perceived shortage of
programmers was an issue that loomed large in the minds of many industry

observers. “First on anyone's checklist of professional problems,” declared a

! Sperry Rand Univac, An Introduction to Programming the UNIVAC 1103A and 1105
Computing Systems (1958) Hagley Archives, Box 372, Accession 1825.

2 John Backus, quoted in Wexelblat, History of programming languages, 26.

¥ RAND Symposium, “On Programming Languages: Part II,” 25-26.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54 From “Black Art” to Industrial Discipline

1962 Datamation editorial, “is the manpower shortage of both trained and even
untrained programmers, operators, logical designers and engineers in a variety
of flavors.”"* The so-called “programmer problem” became an increasingly
important feature of contemporary crisis rhetoric. “Competition for
programmers has driven salaries up so fast,” warned a 1967 article in Fortune
magazine, “that programming has become probably the country’s highest paid
technological occupation ... Even so, some companies can’t find experienced
programmers at any price.””® Automatic programming systems held an obvious

appeal for managers concerned with the rising costs of software development.

There is an interesting gender aspect to many of these developments in automatic programming
techologies. As male programmers attempted to differentiate themselves from lower-status
coders and key-punch operators, they carefully distanced themselves from any possible
association with activities identified as “women’s work.” Many of the advertisements for
automatic programming languages and other office automation technologies used women as a
visual proxy for less expensive, more tractable labor.

Figure 1.2 shows one of a series of advertisements that presented an
unambiguous appeal to gender associations: machines could not only replace
their human female equivalents, but were an improvement on them. In its “Meet
Susie Meyers” advertisements for its PL/1 programming language, the IBM
Corporation asked its users an obviously rhetorical question: “Can a young girl
with no previous programming experience find happiness handling both

commercial and scientific applications, without resorting to an assembler

* Editorial, “Editor's Readout: A Long View of a Myopic Problem,” Datamation 8,5
(1962), 21-22.
* Gene Bylinsky, “Help Wanted: 50,000 Programmers,” Fortune (March, 1967), 141.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 55

language?” The answer, of course, was an enthusiastic “yes!” Although the
advertisement promised a “brighter future for your programmers,” (who would
be free to “concentrate more on the job, less on the language”) it also implied a
low-cost solution to the labor crisis in software. The subtext of appeals like this
was non-too-subtle: If pretty little Susie Meyers, with her spunky miniskirt and
utter lack of programming experience, could develop software effectively in

PL/1, so could just about anyone.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56 From “Black Art” to Industrial Discipline

Our optical
reader can do
anything your
keypunch
operators do.,

{Well, almost.)

It can't take mustornity loaae L A fier fromn
NABING Uy, U (o A reung ek
A1l e e M L osa Tt And gublrke Jeta
af the rate of AN TrpraTitire {of ¥ard
PRIICA) (Lialaa oty 2 sEuawid Nl wcatpale
@iule it reads And e ricr from Loy
P AT S {CFITN0TL a3l <P B I2eteAlTud T EN
cfiaznt v 1 2 devedr o Lesusd

Or mEesns eade wpper and bLirecr J3w
T R e I T e B ¥ A L L R I
18 car Tamlic ftcria v visey 2ok acighty o€

e, smdudting L Ribs et DR CE bt

An drditzsy ownpster plagrame it o
t4diad woloaz L dar . tr add, aladirzos, odo,
Vhsk o vt Sy as o duaele Kot yess tor g
Loeir) TNt asse, T2 ANy 21D CISR T,
ke farkds, Aind wd ronurd fengitie Al
B T S TU TN NE IV P T B TR TR KT g e LIV E 3
Bardaass Icaues 52 skl 120 virwe kg

CANELIET FLoyinud cvergheld?

10y blenttossw: Reotbima Caevgmt oy Kealdior
A8 piacr all- o alkranz 2fl—N rour kaoy-
ErEwT uprerater= AT Jedat that's arar o e
Saxyg ler Acerican Asloes

I suini a3 sodugpnd demt applostacan a2
cae Sariheaame faw vims T us sour padslom
e AT rell Lo e

& RECOGNITION EQUIPMENT o

Figure 1.2: Advertisement from Datamation Magazine, c. 1968.
56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 57

Despite the danger of automatic programming systems being used to eliminate
their occupational monopoly, many programmers actively embraced this new
technology. For those interesting in advancing the academic status of computer
science, the design of programming languages provided an ideal forum for
exploring the theoretical aspects of their discipline. More practically-oriented
programmers saw programming languages as a means to distance themselves
from the more tedious aspects of machine coding. Since “coding” had
traditionally been an activity associated with low-status (and predominantly
female) clerical workers, any tool that allowed programmers to focus more on
design and analysis than on technical minutia was inherently desirable. Asone
review of the Report Program Generator (RPG) suggested, “Writing programs is
fascinating and rewarding work but the functions of many programs are
identical and rewriting these sections can not only become tiresome but also can
get a programmer bogged down on one assignment and unable to move quickly
into a new one.”’® Languages such as RPG would allow programmers to focus
on more interesting and rewarding levels of analysis.

Whatever the motivation behind the development and adoption of any
particular automatic programming system, by the middle of the 1950s there were

a number of these systems being proposed by various manufacturers. Two of

' Harry Leslie, “The Report Program Generator,” Datamation 13, 6 (1967), 26-28.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58 From “Black Art” to Industrial Discipline

the most popular and significant were FORTRAN and COBOL, each developed

by very different groups and intended for very different purposes.

FORTRAN

Although Grace Hopper’s A-2 compiler was arguably the first modern
automatic programming system, the first widely-used and —disseminated
programming language was FORTRAN, developed in 1954-57 by a team of
researchers at the IBM Corporation. As early as 1953 the mathematician and
programmer John Backus had proposed to his IBM employers the development
of a new, scientifically oriented programming language. This new system for
mathematical FORmula TRANSslation would be designed specifically for use
with the soon-to-be-released IBM 704 scientific computer: it would “enable the
IBM 704 to accept a concise formulation of a problem in terms of a mathematical
notation and [would] produce automatically a high-speed 704 program for the
solution of the problem.” The result would be faster, more reliable, and less
expensive software development. FORTRAN would not only “virtually eliminate
programming and debugging,” but would reduce operation time, double
machine output, and provide a means of feasibly investigating complex
mathematical models. In January 1954 Backus was given the go-ahead by his
IBM superiors, and a completed FORTRAN compiler was released to all 704

installations in April 1957.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 59

From the very beginning, development of the FORTRAN language was
focused around a single overarching design objective: the creation of efficient
machine code. Project leader John Backus was highly critical of existing
automatic programming systems, which he saw as little more than mnemonic
code assemblers or collections of subroutines. He also felt little regard for most
contemporary human programmers, who he often derisively insisted on
referring to as “coders.”"” In a 1980 article entitled "Programming in America in
the 1950s - Some Personal Impressions,” Backus famously described

programming in the 1950s as

... a black art, a private arcane matter involving only a small library of
subroutines, and a primitive assembly program. Existing programs for
similar problems were unreadable and hence could not be adapted to new
uses. General programming principles were largely nonexistent. Thus
each problem required a unique beginning at square one, and the success
of a program depended primarily on the programmer's private techniques
and inventions.'®

A truly automatic programming language, believed Backus, would allow

scientists and engineers to communicate directly with the computer, thus

7 When asked about the transformation of the “coder” into the programmer, Backus
dismissively suggested that “it’s the same reason that janitors are now called
“custodians.” “Programmer” was considered a higher class enterprise than “coder,”
and things have a tendency to move in that direction.” This quote appears in Wexelblat,
History of programming languages, 68.

'8 Nick Metropolis, J. Howlett, and Gian-Carlo Rota, eds., A Aistory of computing in the
twentieth century a collection of essays (New York: Academic Press, 1980).

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60 From “Black Art” to Industrial Discipline

eliminating the need for inefficient and unreliable programmers.” The only way
that such a system would be widely adopted, however, was to ensure that the
code it produced would be at least as efficient, in terms of size and performance,
as that produced by its human counterparts.”® Indeed, one of the primary
objections raised against automatic programming languages in this period was
their relative inefficiency: one of the higher-level languages used by SAGE
developers produced programs that ran an order of magnitude slower than those
hand-coded by a top-notch programmer.?* In an era when programming skill
was considered to be a uniquely creative and innate ability, and when the state of
contemporary hardware made performance considerations paramount, users
were understandably skeptical of the value of automatically generated machine
code. The focus of the FORTRAN developers was therefore on the construction
of an efficient compiler, rather than on the design of the language.

In order to ensure that the object code produced by the FORTRAN
compiler was as efficient as possible, several design compromises had to be
made. FORTRAN was originally intended primarily for use on the IBM 704, and
contained several device-specific instructions. Little thought was given to

making FORTRAN machine-independent, and early implementations often

Y Jean Sammett, Programming Languages: History and Fundamentals (Englewood
Cliffs, N.J: Prentice-Hall, 1969), 148.

* Wexelblat, History of programming languages , 28.

Sammett, Programming Languages, 144.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 61

varied greatly from computer to computer, even those developed by the same
manufacturer. The language was also designed solely for use in numerical
computations, and was therefore difficult to use for applications requiring the

manipulation of alphanumeric data. The first FORTRAN manual made clear this

focus on mathematically problem-solving:

The FORTRAN language is intended to be capable of expressing any

problem of numerical computation. In particular, it deals easily with
problems containing large sets of formulae and many variables and it
permits any variable to have up to three independent subscripts.

However, for problems in which machine words have a logical rather than
numerical mean it is less satisfactory, and it may fail entirely to express
some such problems. Nevertheless many logical operations not directly
expressible in the FORTRAN language can be obtained by making use of
provisions for incorporating library routines.?

The power of the FORTRAN language for scientific computation can be
clearly demonstrated by a simple real-world example. The mathematical

expression described by the function

—(B/2)+,/(B/2)2—Ac

A

root =

could be written in FORTRAN using the following syntax:

2 ——, “The FORTRAN Automatic Coding System for the IBM 704 EDPM” (IBM
Corporation, 1956). Cited in Sammett, Programming Languages, 150.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62 From “Black Art” to Industrial Discipline

ROOT = («(B/2.0) + SQRTF{((B/2.0) **2-A*C))/A

Using such straightforward algorithmic expressions, a programmer could write
extremely sophisticated programs with relatively little training and experience.”

Although greeted initially with skepticism, the FORTRAN project was
enormously successful in the long term. A report on FORTRAN usage written
just one year after the first release of the language indicated that “over half [of
the twenty-six 704 installations] used FORTRAN for more than half of their
problems.”** By the end of 1958, IBM produced FORTRAN systems for its 709
and 650 machines. As early as January 1961 Remington Rand Univac became the
first non-IBM manufacturer to provide FORTRAN, and by 1963 a version of the
FORTRAN compiler was available for almost every computer then in existence.”
The language was updated substantially in 1958 and again in 1962. In 1962
FORTRAN became the first programming language to be standardized through
the American Standards Association, which further established FORTRAN as an

industry-wide standard.”

Z Example taken Saul Rosen, ed., Programming Systems and Languages (New York:
McGraw-Hill, 1967), 30.

?* John Backus, “Automatic Programming: Properties and Performance of FORTRAN
Systems I and II,” Proceedings of Symposium on the Mechanization of the Thought
Processes (Middlesex, England: National Physical Laboratory Press, 1958).

¥ H. Oswald, “The Various FORTRANS,” Datamation 10,8 (1964), 25-29; , “Survey
of Programming Languages and Processors,” Communications of the ACM 6,3 (1965),
93-99.

% USA Standard FORTRAN, United States of America Standards Institute, USAS X3.9-
1966, New York, March 1966.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 63

The academic community was an early and crucial supporter of FORTRAN,
contributing directly to its growing popularity. The FORTRAN designers in
general, and John Backus in particular, were regular participants in academic
forums and conferences. Backus himself had delivered a paper at the seminal
1954 Symposium on Automatic Programming for Digital Computers hosted by
the Office of Naval Research. One of his top priorities, after the compilation of
the FORTRAN Programmer’s Reference Manual (itself a model of scholarly
elegance and simplicity), was to publish an academically-oriented article that
would introduce the new language to the scientific community.”

FORTRAN was appealing to scientists and other academics for a number of
reasons. First of all, it was designed and developed by one of their own. John
Backus spoke their language, published in their journals, and shared their
disdain for coders and other “technicians.” Secondly, FORTRAN was was
designed specifically to solve the kinds of problems that interested academics.
Its use of algebraic expressions greatly simplified the process of defining
mathematical problems in machine-readable syntax. Finally, and perhaps most
significantly, FORTRAN provided them more direct access to the computer. Its

introduction “caused a partial revolution in the way in which computer

¥ Backus, et al. “The FORTRAN automatic coding language,” Proceedings of the West
Joint Computer Conference, 1957. Backus would later become widely-known
throughout the academic community as the co-developer of the Backus-Naur Form, the
notational system used to describe most modern programming languages.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64 From “Black Art” to Industrial Discipline

installations were run because it became not only possible but quite practical to
have engineers, scientists, and other people actually programming their own
problems without the intermediary of a professional programmer.””? The use of
FORTRAN actually became the centerpiece of an ongoing debate about “open”
versus “closed” programming “shops.” The closed shops allowed only
professional programmers to have access to the computers; open shops made
these machines directly available to their users.

The association of FORTRAN with scientific computing was a self-
replicating phenomenon. Academics preferred FORTRAN to other languages
because they believed it allowed them to do their work more effectively, and
they therefore made FORTRAN the foundation of their computing curricula.
Students learned the language in university courses and were therefore more
effective at getting their work done in FORTRAN. A positive-feedback loop was
established between FORTRAN and academia. A 1973 survey of more than
35,000 students taking college-level computing courses revealed that seventy
percent were learning to program using FORTRAN. The next most widely used
alternative, BASIC, was used by only thirteen percent, and less than three

percent were exposed to business-oriented languages such as COBOL.?

® Sammett, Programming Languages, 149.
» Daniel McCracken, “Is There FORTRAN In Your Future?,” Dafamation19, 5 (1973),
236-237.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 65

Throughout the 1960s and 1970s, FORTRAN was clearly the dominant language

of scientific computation.

coBoL

On April 8, 1959, a group of computer manufacturers, users, and academics
met at the University of Pennsylvania’s Computing Center to discuss a proposal
to develop “the specifications for a common business language for automatic
digital computers.”®*® The goal was to develop a programming language
specifically aimed at the needs of the business data processing community. This
new language would rely on simple English-like commands, would be easier to
use and to understand than existing scientific languages, and would provide
machine-independent compatibility: that is, the same program could be runona
wide variety of hardware with very little modification.

Although this proposal originated in the ElectroData Division of the
Burroughs Corporation, from the very beginning it had broad industrial and
governmental support. The Director of Data Systems for the Department of
Defense readily agreed to sponsor a formal meeting on the proposal, and his
enthusiastic support indicates a widespread contemporary interest in business-

oriented programming:

¥ LE. Block, Report on Meeting Held at University of Pennsylvania Computing Center,
April 9, 1959.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66 From “Black Art” to Industrial Discipline

The Department of Defense was pleased to undertake this project: in fact,
we were embarrassed that the idea for such a common language had not
had its origin in Defense since we would benefit so greatly from such a
project, and at the same time one of the Air Force commands was in the
process of developing one of the business languages AIMACO.*!

The first meeting to discuss a common business language (CBL) was held at
the Pentagon on May 28-29, 1959. Attending the meeting were fifteen officials
from seven government organizations; fifteen representatives of the major
computer manufacturers (including Burroughs, GE, Honeywell, IBM, NCR,
Phillips, RAC, Remington-Rand Univac, Sylvania, and ICT); and eleven users
and consultants (significantly, only one member of this last group was from a
university). Despite the diversity of the participants, the meeting produced
both consensus and a tangible plan of action. The group not only decided that
CBL was necessary and desirable, but agreed on its basic characteristics: a
problem-oriented, English-like syntax; a focus on ease of use rather than power
or performance; and a machine-independent design. Three committees were
established, under the auspices of a single Executive Committee of the
Conference on Data Systems Languages (CODASYL), to suggest short-term,
intermediate, and long-range solutions, respectively. As it turned out, it was the

short-term committee that produced the most lasting and influential proposals.

3! Charles Phillips, Report from the Committee on Data Systems Languages (Oral
presentation to the Association for Computing Machinery, Boston, MA, September 1,
1959). Cited in Wexelblat, History of programming languages, 200.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 67

The original purpose of the Short-Range Committee was to evaluate the
strengths and weaknesses of existing automatic compilers and to recommend a
“short term composite approach (good for the next year or two) to a common
business language for programming digital computers.”** There were three
existing compiler systems that the committee was particularly interested in
considering: FLOW-MATIC, which had been developed for Remington-Rand
Univac by Grace Hopper (as an outgrowth of her A-series algebraic and B-series
business compilers), and which was actually in use by customers at the time;
AIMACO, developed for the Air Force Air Material Command; and COMTRAN
(soon to be renamed the Commercial Translator), a proposed IBM product that
existed only as a specification document. Other manufacturers such as Sylvania
and RCA were also working on the development of similar languages. Indeed,
one of the primary goals of the Short-Range Committee was to “nip these
projects in the bud” and to provide incentives for manufacturers to standardize
on the CBL rather than to pursue their own independent agendas.® At the first

meeting of one of the Short-Range Committee task groups, for example, most of

% Charles Phillips, Minutes, Meeting of the Executive Committee of the Conference on
Data Systems Languages (1959). Cited in Wexelblatt, History of programming
languages, 202.

3 Other languages considered were Autocoder III, SURGE, Fortran, RCA 501 Assembler,
Report Generator, and APG-1 (Wexelblatt, 204).

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68 From “Black Art” to Industrial Discipline

the time was spent getting statements of commitment from the various
manufacturers.*

From the very beginning, the process of designing the CBL was
characterized by a spirit of pragmatism and compromise. The Short-Range
Committee, often referred to as the PDQ (pretty darn quick) Committee, took
seriously their charge to work quickly to produce an interim solution.
Remarkably enough, less than three months later the committee had produced a
nearly-complete draft of a proposed CBL specification. In doing so the CBL
designers borrowed freely from models provided by Remington-Rand Univac’s
FLOW-MATIC language and the IBM Commercial Translator. In a September
report to the Executive Committee of CODASYL, the Short-Range Committee
requested permission to continue development on the CBL specification, to be
completed by December 1, 1959. Shortly thereafter, the name COBOL (an
acronym for COmmon Business Oriental Language) was formally adopted.
Working around the clock for the next several months, the PDQ group was able
to produce their finished report just in time for their December deadline. It was
approved by the CODASYL, and in January 1960 the official COBOL-60

specification was released by the Government Printing Office.

3 Task Group of Statement Language, July 22, 1959.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 69

The structure of the COBOL-60 specification reveals its mixed origins and
commercial orientation. Although from the very beginning the COBOL
designers were concerned with “business data processing,” there was never any
attempt to provide a real definition of that phrase.* It was clearly intended that
the language could be used by novice programmers and read by managers. For
example, an instruction to compute an employee’s overtime pay might be

written as follows:

MULTIPLY NUMBER-OVTIME-HRS BY OVTIME-PAY-RATE GIVING
OVTIME- PAY-TOTAL

It was felt that this readability would result from the use of English
language instructions, but no formal criteria or tests for readability were
provided. In many cases compromises were made that allowed for conflicting
interpretations of what made for “readable” computer code. For example,
arithmetic formulas could either be written using a combination of arithmetic
verbs —i.e. ADD, SUBTRACT, MULTIPLY, or DIVIDE — or as symbolic formulas.
The use of arithmetic verbs was adapted directly from the FLOW-MATIC
language, and reflected the belief that business data processing users could not —
and should not — be forced to use formulas. The capability to write symbolic
formulas was included (after much contentious debate) as a means of providing

power and flexibility to more mathematically sophisticated programmers.

¥ Jean Sammett, quoted in Wexelblatt, History of programming languages, 219.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70 From “Black Art” to Industrial Discipline

However, such traditional mathematical functions such as SINE and COSINE
were deliberately excluded as being unnecessary to business data processing
applications.

Another concession to the objective of readability was the inclusion of
extraneous “noise words.” These were words or phrases that were allowable but

not necessary: for example, in the statement

READ f/el RECORD INTO variablel AT END goto procedure2

the words RECORD and AT are syntactically superfluous. The statement would

be equally valid written as

READ £ilel1INTO variablel END gofo procedureZ.

The inclusion of the noise words RECORD and AT was perceived by the
designers to enhance readability. Users had the option of including or excluding
them according to individual preference or corporate policy.

In addition to designing COBOL to be “English-like” and readable, the
committee was careful to make it as machine-independent as possible. Most
contemporary programming systems were tied to a specific processor or product
line. If the user wanted to replace or upgrade their computer, or switch to
machines from a different manufacturer, they had to completely rewrite their
software from scratch, typically an expensive, risky, and time-consuming

operation. Users often became bound to outdated and inefficient hardware

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 71

systems simply because of the enormous costs associated with upgrading their
software applications. This was especially true for commercial data processing
operations, where computers were generally embedded in large, complex
systems of people, procedures, and technology. A truly machine-independent
language would allow corporations to reuse application code and thereby reduce
programming and maintenance costs. It would also allow manufacturers to sell
or lease more of their most recent (and profitable) computers.

The COBOL language was deliberately organized in such a way as to
encourage portability from one machine to another. Every element of a COBOL
application was assigned to one of four functional divisions: IDENTIFICATION,
ENVIRONMENT, DATA, and PROCEDURE. The IDENTIFICATION division
provided a high-level description of the program, including its name, author,
and creation date. The ENVIRONMENT division contained information about
the specific hardware on which the program was to be compiled and run. The
DATA division described the file and record layout of the data used or created
by the rest of application. The PROCEDURE division included the algorithms
and procedures that the user wished the computer to follow. Ideally, this rigid
separation of functional divisions would allow a user to take a deck of cards
from one machine to another without making significant alterations to anything

but the ENVIRONMENT description. In reality, this degree of portability was

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72 From “Black Art” to Industrial Discipline

almost impossible to achieve in real-world applications in which performance
was a primary consideration. For example, the most efficient method of laying
out a file for a 24-bit computer was not necessarily optimal for a 36-bit machine.
Nevertheless, machine independence “was a major, if not the major” design
objective of the Short-Range Committee.* Achieving this objective proved
difficult both technically and politically, and greatly influenced both the design
of the COBOL specification and its subsequent reception within the computing
community.

One of the greatest obstacles to achieving machine independence was the
computer manufacturers themselves. Each manufacturer wanted to make sure
that COBOL included only features that would run efficiently on their devices.
For example, a number of users wanted the language to include the ability to
read a file in reverse order. For those machines that had a basic machine
command to read a tape backwards this was an easy feature to implement. Even
those computers without this explicit capability could achieve the same
functionality by backing the tape up two records and then reading forward one.
Although this potential READ REVERSE command could therefore be logically
implemented by everyone, it significantly penalized those devices without the

basic machine capability. It was therefore not included in the final specification.

% Jean Sammett, in Wexelblatt, Flistory of, programming languages, 234.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 73

There were other compromises that were made for the sake of machine
independence. In order to maintain compatibility among different machines
with different arithmetic capabilities, eighteen decimal digits were chosen as the
maximum degree of precision supported. This particular degree of precision
was chosen “for the simple reason that it was disadvantageous to every
computer thought to be a potential candidate for having a COBOL compiler.””
No particular manufacturer would therefore have an inherent advantage in
terms of performance. In a similar manner, provisions were made for the use of
binary computers, despite the fact that such machines were generally not
considered appropriate for business data processing. The decision to allow only
a limited character set in statement definitions — using only those characters that
were physically available on almost all data-entry machines — was a self-imposed
constraint that had “an enormous influence on the syntax of the language” but
was nevertheless considered essential to widespread industry adoption. The use
of such a minimal character set also prevented the designers from using the
sophisticated reference language techniques that had so enamored theoretical
computer scientists of the ALGOL 58 specification.

This dedication to the ideal of portability set the Short-Term Committee at

odds with some of their fellow members of CODASYL. In October 1959 the

¥ Wexelblat, History of programming languages, 231.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74 From “Black Art” to Industrial Discipline

Intermediate-Range Committee passed a motion declaring that the FACT
programming language — recently released by the Honeywell corporation - was
a better language than that produced by the Short-Range Committee and should
therefore form the basis of the CBL.*® Although many members of the Short-
Range Committee agreed that FACT was indeed a technically advanced and
superior language, they rejected any solution that was tied to any particular
manufacturer. Inorder to ensure that the CBL would be a truly common
business language, elegance and efficiency had to be compromised for the sake
of readability and machine independence. Despite the opposition of the
Intermediate-Range Committee (and the Honeywell representatives), the
Executive Committee of the CODASYL eventually agreed with the design
priorities advocated by the PDQ group.

The first COBOL compilers were developed in 1960 by Remington-Rand
Univac and RCA. In December of that year the two companies hosted a dramatic
demonstration of the cross-platform compatibility of their individual compilers:
the same COBOL program, with only the ENVIRONMENT division needing to
be modified, was run successfully on machines from both manufacturers.
Although this was a compelling demonstration of COBOL's potential, other

manufacturers were slow to develop their own COBOL compilers. Honeywell

38 Minutes of the IRTF, 1959.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 75

and IBM, for example, were loathe to abandon their own independent business
languages. Honeywell’s FACT had been widely praised for its technical
excellence, and the IBM Commercial Translator already had an established
customer base.* By the end of 1960, however, the United States military had put
the full weight of its prestige and purchasing power behind COBOL. The
Department of Defense announced that it would not lease or purchase any new
computer without a COBOL compiler unless its manufacturer could demonstrate
that its performance would not be enhanced by the availability of COBOL.* No
manufacturer ever attempted such a demonstration, and within a year COBOL
was well on its way toward becoming an industry standard.

It is difficult to establish empirically how widely COBOL was adopted,
but anecdotal evidence suggests that it is by far the most popular and widely
used computer language ever.*! A recent study undertaken in response to the
perceived Y2K crisis suggests that there are 70 billion lines of COBOL code
currently in operation in the United States alone. Despite its obvious popularity,
however, from the very beginning COBOL has faced severe criticism and

opposition, particularly from within the computer science community. One 1977

¥ Robert Bemer, “A view on the history of COBOL,” Honeywell Computer Journals, 3
(1971).

“ Campbell-Kelly, Aspray, Computer, 192.

See Stanley Naftaly, “How to Pick a Programming Language,” in Fred Gruenberger
and Stanley Naftaly, eds., Dafa Processing. Practically Speaking (Los Angeles: Data
Processing Digest, 1967), 98; “What’s happening with COBOL,” Business Automation,
April 1968.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76 From “Black Art” to Industrial Discipline

programming language textbook judged COBOL’s programming features as fair
and its implementation dependent features as poor and its overall writing as fair
to poor. It also noted its “tortuously poor compactness and poor uniformity.”*
The noted computer scientist Edsger Dijkstra wrote that “COBOL cripples the
mind,” and another of his colleagues called it “terrible” and “ugly.”* Several
notable textbooks on programming languages from the 1980s did not even
include COBOL in the index.

There are a number of reasons why computer scientists have been so harsh
in their evaluation of COBOL. Some of these objections are technical in nature,
but most are aesthetic, historical, or political. Most of the technical criticisms
have to do with COBOL's verbosity, its inclusion of superfluous “noise words,”
and its lack of certain features (such as protected module variables). Although
many of these shortcomings were addressed in subsequent versions of the
COBOL specification, the academic world continued to vilify the language. Ina
1985 article on “The Relationship Between COBOL and Computer Science,” the
computer scientist Ben Shniederman identified several explanations for this

continued hostility: First of all, no academics were asked to participate on the

initial design team. In fact, the COBOL developers apparently had little interest

2 Allen Tucker, Programming Languages (Reading, MA: Addison-Wesley, 1977).
* Cited in Ben Shneiderman, “The Relationship Between COBOL and Computer
Science,” Annals of the History of Computing7, 4 (1985), 350.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 77

in the academic or scientific aspects of their work. All of the articles included in
a May 1962 Communications of the ACM issue devoted to COBOL were written
by industry or government practitioners. Only four of the thirteen included even
the most basic references to previous and related work: the lack of academic
sensibilities was immediately apparent. Also noticeably lacking was any
reference to the recently developed Backus-Naur Form notation that had already
become popular as a meta-language for describing other programming
languages. No attempt was made to produce a textbook describing the
conceptual foundations of COBOL until 1963. Most significant, however, was
the sense that the problem domain addressed by the COBOL designers, i.e.
business data processing, was not theoretically sophisticated or interesting. One
1974 programming language textbook described COBOL as having “an
orientation toward business data processing ... in which the problems are ...
relatively simple algorithms couple with high-volume input-output (e.g.
computing the payroll for a large organization.” Although this dismissive
account hardly captures the complexities of many large-scale business
applications, it does appear to accurately represent a prevailing attitude among
computer scientists. COBOL was considered a “trade-school” language rather

than a serious intellectual accomplishment. #

* Shneiderman, “The Relationship Between COBOL and Computer Science,” 351.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78 From “Black Art” to Industrial Discipline

Despite these objections, COBOL has proven remarkably successful.
Certainly the support of the United States government had a great deal to do
with its initial widespread adoption. But COBOL was attractive to users —
business corporations in particular- for other reasons as well. The belief that
“English-like” COBOL code could be read and understood by non-programmers
was appealing to traditional managers who were worried about the dangers of
“letting the 'computer boys' take over.”* It was also hoped that COBOL would
achieve true machine independence - arguably the holy grail of language
designers —and, of all its competitors, COBOL did perhaps come closest to
achieving this ideal. Although COBOL has often been derided by critics as the
inelegant result of “design by committee,” the broad inclusiveness of the
CODASYL helped ensure that no one manufacturer’s hardware would be
favored. Committee control over the language specification also prevented
splintering: whereas numerous competing dialects of FORTRAN and ALGOL
were developed, COBOL implementations remained relatively homogenous.
The CODASYL structure also provided a mechanism for ongoing language

maintenance with periodic “official” updates and releases.

* John Golda, “The Effects of Computer Technology on the Traditional Role of
Management,” (MBA thesis, Wharton School, University of Pennsylvania, 1965), 34;
Robert Gordon, “Personnel Selection” in Fred Gruenberger and Stanley Naftaly, eds.,
Data Processing. Practically Speaking (Los Angeles: Data Processing Digest, 1967), 85.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 79

ALGOL, Pascal, ADA and Beyond ...

Although FORTRAN and COBOL were by far the most popular
programming languages developed in the United States during this period, they
were by no means the only ones to appear. Jean Sammet, editor of one of the
first comprehensive treatments of the history of programming languages, has
estimated that by 1981 there were a least one thousand programming languages
in use nationwide. It would be impossible to even enumerate, much less
describe, the history and development of each of these languages. Figure 1.3
contains a “genealogical” listing of some of the more widely-used programming
languages developed prior to 1970. This section will focus on a few of the more

historically significant alternatives to FORTRAN and COBOL.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80 From “Black Art” to Industrial Discipline

BEIRE i I" 952 11953 51954' 1955:131956°}: 11 1962:): 1963 |-1964 1: 1965 . 1968 }-1267 11968 '196-5-. +1970 ¥
R 3y |Speedcoding |
By 3245 | Shorcode Math-Matic
SLETE FORTRAN | »|FORTRAN II FORTRAN IV
I. v Lanier & Ziacier |
-;:(h BACAIQPRINT |IT FORTRANSIT
z ALGOL 58 ALGOL 60 |Revised ALGOL 60
NELIACH
MAD I NAPSS POSE [SALEM
MADCAP COLASE MIRFAC MAC-360
JOSS BASIC
AMTRAN
) CIALOG APL 360)
FORMAC |PLN - FORMAC
Mathiab MathLab-68
[Fae REDUCE s
FLOWMATIC COBOL —%COBOL 61 COBOL 65§ —#»COBOL 6&/COBOL 70
AIMACO
Commerical Tranalator GECOM DS
I . FACT e
Cora! Street Speint |LispA Balm
IPLV LISP 1 —»-LISP 1.5 o Losa |TPS
Leaf
comIT » |COMIT Il
|string Procesaing ™ SNOBOL ——» (SNOBOL3 —-»SNOBOL4
:«; Trac
Ambit » -
i JOVIAL —— |JOVIAL 2 » [JOVIAL3 |iear Aparel
Lisp 2
PLA
-1952]-1963] -1954] -1955] -1956] -1957] - 1958] -1950] -1960]- 1961] - 1962] -1963] -1964] -1965] 1966] 1967] .1968] 1968] . —1970]
Figure 1.3: Genealogy of Programming Languages, 1952-1970.

More than a year before the Executive Committee of CODASYL convened to
discuss the need for a common business-oriented programming language, an ad
hoc committee of users, academics, and federal officials met to study the
possibility of creating a universal programming language. This committee,
which was brought together under the auspices of the Association for
Computing Machinery (ACM), could not have been more different from the
group organized by CODASYL. Whereas the fifteen member Executive
Committee had contained only one university representative, the identically-
sized ACM-sponsored committee was dominated by academics. At their first
meeting, this committee decided to follow the model of FORTRAN in designing

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 81

an algebraic language. FORTRAN itself was not acceptable because of its
association with IBM.

The ACM “universal language” project soon expanded into an international
initiative. Europeans in particular were deeply interested in a language that
would both transcend political boundaries and help avoid the domination of
Europe by the IBM Corporation. During an eight-day meeting in Zurich,
Switzerland, a rough specification for the new International Algebraic Language
(TIAL) was hashed out. Actually, three distinct versions of the IAL were created:
reference, publication, and hardware. The reference language was the abstract
representation of the language as envisioned by the Zurich committee. The
publication and hardware languages would be isomorphic implementations of
the abstract reference language. Since these specific implementations required
careful attention to such messy details as character sets and delimiters (decimal
points being standard in the United States and commas in Europe), they were left
for a later and unspecified date. The reference language was released in 1958
under the more popular and less pretentious name ALGOL (ALGOrithmic
Language).

In many ways ALGOL was a remarkable achievement in the nascent
discipline of computer science. ALGOL 58 was something of a work in progress;

ALGOL 60, which was released shortly thereafter, is widely considered to be a

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82 From “Black Art” to Industrial Discipline

model of completeness and clarity. The ALGOL 60 version of the language was
described using an elegant meta-language known as Backus Normal Form
(BNF), developed specifically for that purpose. Backus Normal Form, which
resembles the notation used by linguists and logicians to describe formal
languages, has since become the standard technique for representing
programming languages. The elegant sophistication of ALGOL 60 report
appealed particularly to computer scientists. In the words of one well-respected

admirer,

The language proved to be an object of stunning beauty ... Nicely
organized, tantalizingly incomplete, slightly ambiguous, difficult to read,
consistent in format, and brief, it was a perfect canvas for a language that
possessed those same properties. Like the Bible, it was meant not merely
to be read, but interpreted.*®

ALGOL 60 soon became the standard by which all subsequent language
developments were measured and evaluated.

Despite its intellectual appeal and the enthusiasm in which it was greeted in
academic and European circles, ALGOL was never widely adopted in the United
States. Although many Americans recognized that ALGOL was an elegant
synthesis, most saw language design as just one step in a lengthy process leading
to language acceptance and use. In addition, in the United States there were

already several strong competitors currently in development. IBM and its

“ Alan Perlis, quoted in Wexelblat, History of programming languages, 60.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 83

influential users group SHARE supported FORTRAN, and business data
processors preferred COBOL. Even those installations that preferred ALGOL
often used it only as a starting point for further development, more “as a rich set
of guidelines for a language than a standard to be adhered to.”¥ Numerous
dialects or spin-off languages emerged, most significantly JOVIAL, MAD, and
NELIAC, developed at the System Development Corporation, the University of
Michigan, and the Naval Electronics Laboratory, respectively. Although these
languages benefited from ALGOL, they only detracted from its efforts to emerge
as a standard. With a few noticeable exceptions — the ACM continued to use it as
the language of choice in its publications, for example — ALGOL was generally
regarded in the United States as an intellectual curiosity rather than a functional
programming language.

The real question of historical interest, of course, is not so much why specific
individual programming languages were created, but rather why so many. In
the late 1940s and early 1950s there was no real programming community per se,
only particular projects being developed at various institutions. Each project
necessarily developed its own techniques for facilitating programming. By the
middle of the 1950s, however, there were established mechanisms for

communicating new research and development, and there were deliberate

¥ Perlis in Wexelblat, History of programming languages, 82.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84 From “Black Art” to Industrial Discipline

attempts to promote industry-wide programming standards. Nevertheless, there
were literally hundreds of languages developed in the decades of the 1950s and
1960s. FORTRAN and COBOL have emerged as important standards in the
scientific and business communities, respectively, and yet new languages
continued — and still continue — to be created. What can explain this curious
Cambrian explosion in the evolutionary history of programming?

Some of the many divergent species of programming languages can be
explained by looking at their functional characteristics. Although general
purpose languages such as FORTRAN and COBOL were suitable for a wide
variety of problem domains, certain applications required more specialized
functions to perform most efficiently. The General Purpose Simulation System
(GPSS) was designed specifically for the simulation of system elements in
discrete numerical analysis, for example. APT was commissioned by the Aircraft
Industries Association and the United States Air Force to be used primarily to
control automatic milling machines. Other languages were designed not as
much for specialized problem domains as for particular pedagogical purposes -
in the case of BASIC, for example, the teaching of basic computer literacy. Some
languages were known for their fast compilation times, others for the efficiency
of their object code. Individual manufacturers produced languages that were

optimized for their own hardware, or as part of a larger marketing strategy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 85

There were also less obviously utilitarian reasons for developing new
programming languages, however. Many common objections raised against
existing languages were more matters of style rather than substance. The
rationale given for creating a new language often boiled down to a declaration
that “this new language will be easier to use or better to read or write than any of
its predecessors.” Since there were generally no standards for what was meant
by “easier to use or better to read or write,” such declarations can only be
considered statements of personal preference. As Jean Sammet has suggested,
although lengthy arguments have been advanced on all sides of the major
programming language controversies, “in the last analysis it almost always boils
down to a question of personal style or taste.”*

For the more academically-oriented programmers, designing a new language
was a relatively easy way to attract grant money and publish articles. There have
been numerous languages that have been rigorously described but never
implemented. They served only to prove a theoretical point or to advance an
individual’s career. In addition, many in the academic community seemed to be
afflicted with what has often been referred to as the NIH (“not invented here”)
syndrome: any language or technology that was designed by someone else could

not possibly be as good as one that you invented yourself, and so a new version

* Jean Sammett, “Programming Languages History,” Annals of the History of
Computing 13, 1 (1991), 49.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86 From “Black Art” to Industrial Discipline

needed to be created to fill some ostensible personal or functional need. As
Herbert Grosch lamented in 1961, filling these needs was personally satisfying

but ultimately self-serving and divisive:

Pride shades easily into purism, the sin of the mathematicians. To be the
leading authority, indeed the only authority, on ALGOL 61B mod 12, the
version that permits black letter as well as Hebrew subscripts, is a
satisfying thing indeed, and many of us have constructed comfortable

private universes to explore.”

One final and closely related reason for the proliferation of programming
languages is that designing programming languages was fun. The adoption of
meta-languages and the Backus Normal Form allowed for the rapid
development and implementation of creative new languages and dialects. If

programming was enjoyable, even more so was language design!®

. No Silver Bullet

In 1987 the computer scientist Frederick Brooks published an essay
describing the major developments in automatic programming technologies that
had occurred over the past several decades. As an accomplished academic and
experienced industry manager, Brooks was a respected figure within the

programming community. Using characteristically vivid language, his “No

* Herb Grosch, “Software in Sickness and Health,” Datamation7,7 (1961), 32-33.
% 1bid, 33.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 87

Silver Bullet: Essence and Accidents of Software Engineering” reflected upon the

inability of these technologies to bring an end to the ongoing software crisis:

Of all the monsters that fill the nightmares of our folklore, none terrify
more than werewolves, because they transform unexpectedly from the
familiar into horrors. For these, one seeks bullets of silver that can
magically lay them to rest.

The familiar software project, at least as seen by the nontechnical
manager, has something of this character; it is usually innocent and
straightforward, but is capable of becoming a monster of missed
schedules, blown budgets, and flawed products. So we hear desperate
cries for a —silver bullet—something to make software costs drop as
rapidly as computer hardware costs do.

But, as we look to the horizon of a decade hence, we see no silver bullet.
There is no single development, in either technology or in management
technique, that by itself promises even one order-of-magnitude
improvement in productivity, in reliability, in simplicity.”

Brook’s article provoked an immediate reaction, both positive and negative.
The object-oriented programming (OOP) advocate Brad Cox insisted, for
example, in his aptly titled “There is a Silver Bullet,” that new techniques in OOP
promised to bring about “a software industrial revolution based on reusable and
interchangeable parts that will alter the software universe as surely as the
industrial revolution changed manufacturing.”* Whatever they might have

believed about the possibility of such a silver bullet being developed in the

future, however, most programmers and managers agreed that none existed in

*! Brooks, ““No Silver Bullet.”
%2 Brad Cox, “There is a Silver Bullet,” Byte 15, 10 (1990).

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88 From “Black Art” to Industrial Discipline

the present. In the late 1980s, almost three decades after the first high-level
automatic programming systems were introduced, concern about the software
crisis was greater than ever. The same year that Brooks published his “No Silver
Bullet,” the Department of Defense warned against the very real possibility of
“software-induced catastrophic failure” disrupting its strategic weapons
systems.” Two years later, Congress released a report entitled "Bugs in the
Program Problems in Federal Government Computer Software Development
and Regulation,” initiating yet another full-blown attack on the fundamental
causes of the software crisis.* Ironically, the Department of Defense decided that
what was needed to deal with this most recent outbreak of crisis was yet another
new programming language — in this case ADA, which was trumpeted as a
means of “replacing the idiosyncratic ‘artistic” ethos that has long governed
software writing with a more efficient, cost-effective engineering mind-set.”*
Why have automatic programming languages and other technologies thus

far failed to resolve — or apparently even mitigate - the seemingly perpetual

software crisis? First of all, it is clear that many of these languages and systems

% Morrison, “Software Crisis,” 72.

> The 33-page report, entitled “Bugs in the Program: Problems in Federal Government
Computer Software Development and Regulation,” was written by two staff members,
James H. Paul and Gregory C. Simon, of the Subcommittee on Investigations and
Oversight of the House Committee on Science, Space, and Technology. The content of
the report was covered in The Washington Post(October 17, 1989), D1 and Science
(November 10, 1989), 753 among many other publications. For example, see Gary
Chapman, “Bugs in the program,” Communications of the ACM 33,3 (1990), 251-252.
> Morrison, “Software Crisis,” 72.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 89

were not able to live up to their marketing hype. Even those systems that were
more than a “complex, exception-ridden performer of clerical tasks which was
difficult to use and inefficient,” (as John Backus characterized the programming
tools of the early 1950s) could not eliminate the need for careful analysis and

skilled programming. As Willis Ware characterized the situation in 1965,

We lament the cost of programming; we regret the time it takes. What we
really are unhappy with is the total programming process, not
programming (i.e. writing routines) per se. Nonetheless, people generally
smear the details into one big blur; and the consequence is, we tend to
conclude erroneously that all our problems will vanish if we can improve
the language which stands between the machine and the programmer.
T'aint necessarily so. All the programming language improvement in the
world will not shorten the intellectual activity, the thinking, the analysis,
that is inherent in the programming process. Another name for the
programming process is “problem solving by machine;” perhaps it
suggests more pointedly the inherent intellectual content of preparing
large problems for machine handling.®

Although programming languages could reduce the amount of clerical work
associated with programming, and did help eliminate certain types of errors
(mostly those associated with transcription errors or syntax mistakes), they also
introduced new sources of error. In the late 1960s a heated controversy broke
out in the programming community over the use of the “GOTO statement.”” At
the heart of this debate was the question of professionalism: although high-level

languages gave the impression that just anyone could program, many

% Willis Ware, “As [See It: A Guest Editorial,” Datamation 11, 5 (1965), 27.
% Edsger Dijkstra, “Go To Statement Considered Harmful,” Communications of the
ACM11, 3 (1968), 147-148.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90 From “Black Art” to Industrial Discipline

programmers felt this was a misconception disastrous to both their profession
and the industry in general. The debate over who the legitimate users of these
languages should be, and consequently who the languages should be designed
for, was by no means new. At the 1962 RAND Symposium on Programming
Languages, Jack Little lamented the tendency of manufacturers to designing
languages “for use by some sub-human species in order to get around training
and having good programmers ...”* Dick Talmadge and Barry Gordon of IBM
admitted to thinking in terms of an imaginary “Joe Accountant” user: the
problem that IBM faced, according to Galler, was that “If you can design a
language that Joe Accountant can learn easily, then you're still going to have
problems because you're probably going to have a lousy language.”* Fred
Gruenberger of RAND later summed up the essence of the entire debate:
“COBOL, in the hands of a master, is a beautiful tool - a very powerful tool.
COBOL, as it's going to be handled by a low grade clerk somewhere, will be a
miserable mess...Some guys are just not as smart as others. They can distort
anything.”*

The designers and advocates of various automatic programming systems

never succeeded in addressing the larger issues posed by the difficulties inherent

*® RAND Symposium, “On Programming Languages, Part I,” 29-30.
¥ RAND Symposium, “On Programming Languages, Part II,” 27.
% Ibid, 28.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programming as Technology & Practice 91

in the programming process. High-level languages were necessary but not
sufficient: that is, the use of these languages became an essential component of
software development, but could not in themselves ensure a successful
development effort. Programming remained a highly skilled occupation, and
programmers continued to defy traditional methods of job categorization and
management. By the end of the 1960s the search for a “silver bullet” solution to
the software crisis had turned away from programming languages and towards
more comprehensive techniques for managing the programming process. Many
of these new techniques involved the creation of new automatic programming
technologies, but most revolved around more systemic solutions and new

methods of programmer education, management, and professional development.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Two: The Mongolian Horde versus The Superprogrammer

Most experts agree that another barrier to the most desirable use of the computer is the
immense culture and communication gap that divides managers from computer people.
The computer people tend to be young, mobile, and quantitatively oriented, and look to
their peers both for company and for approval ... Managers, on the other hand, are
typically older and tend to regard computer people either as mere technicians or as
threats to their position and status - in either case they resist their presence in the halls of
power.!

"Computers Can't Solve Everything,” Forfune Magazine (1969)

[The Software Crisis as a Problem of Programmer Management

In the collective memory of the programming community, the years between
1968 and 1972 mark a major turning point in the history of their industry and
profession. It is during this period that the rhetoric of crisis became firmly
entrenched in the vernacular of commercial computing. A series of highly public
software disasters — the software related destruction of the Mariner I spacecraft,
the IBM OS/360 debacle, the devastating criticism of contemporary EDP
practices published by McKinsey and Company — lent credence to the popular
belief that an industry-wide software crisis was imminent.> The 1968 Garmisch

conference gave voice to widespread concerns that the production of software

' T. Alexander, “Computers Can't Solve Everything,” Forfune (October, 1969), 169.

%2 The Mariner I incident involved a software problem that resulted in the destruction of
multi-million dollar spacecraft. The OS/360 operating system, which cost the IBM
Corporation half a billion dollars to develop — the single largest expenditure in company
history, was delivered nine months late and riddled with errors. The 1968 McKinsey
reports suggested that most corporate computer efforts were not only poorly managed
but also unprofitable.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 93

had become “a scare item for management...an unprofitable morass, costly and
unending,” while at the same time establishing “software engineering” as the
dominant paradigm for thinking about the future of the industry.’

In the wake of these events numerous attempts were made to realize this
software engineering “revolution.” Many of these attempts involved not so much
the development of new programming technologies as the imposition of new
management methodologies. Indeed, many of the most significant innovations in
software engineering to be developed in the immediate post-Garmisch era were
as much managerial as they were technological or professional. This turn
towards management solutions to the software crisis reflects a significant shift in
contemporary attitudes towards programmers and other computer specialists.
By reconstructing the software crisis as a problem of management technique
rather than technological innovation, advocates of these new management-
oriented approaches also relocated the focus of its solution, removing it from the
domain of the computer specialist and placing it firmly in the hands of
traditional managers.

This chapter explores the changing relationship between software workers
and their corporate employers. My argument is that the significant

developments in software management that occurred in this period can best be

3 Peter Naur, Brian Randall, and J.N. Buxton, ed., Software Engineering: Proceedings of
the NATO conferences (New York: Petrocelli/Carter, 1976), 4.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 From “Black Art” to Industrial Discipline

understood as a jurisdictional struggle over control of the increasingly valuable
occupational territory opened up by the electronic digital computer. Just as the
computer itself was gradually reconstructed, in response to a changing social and
technical environment, from a scientific and military instrument into a
mechanism for corporate communication and control, the modern business
organization had to adapt itself to the presence of a powerful new technology.

As the computer transformed from a tool o e managed into a tool for
management, computer users emerged as powerful “change-agents” (to use the
management terminology of the era). Faced with this perceived challenge to their
occupational territory, traditional managers attempted to reassert their control
over corporate data processing. The managerial innovations of the late 1960s can

only be understood in terms of this very real struggle for professional authority.

“Seat-of-the-Pants Management”
In describing his experiences as the project manager of the single largest and
most expensive software development effort ever undertaken in the history of
the IBM Corporation, the noted computer scientist Frederick P. Brooks provided

a curiously literary portrayal of the computer programmer: “The programmer,

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 95

like the poet, works only slightly removed from pure-thought stuff. He builds
his castles in the air, from air, creating by exertion of the imagination.”

That a technical manager in a conservative corporation should use such lofty
language in reference to such a stereotypically mundane and prosaic occupation
is striking but not unusual. Throughout the 1950s and early 1960s, computer
programming was widely considered to be a uniquely creative activity - genuine
“’brain business,' often an agonizingly difficult intellectual effort” —and therefore
almost impossible to manage using conventional methods.” Anecdotal evidence
seemed to indicate that “the past management techniques so successful in other
disciplines do not work in programming development ... Nothing works except
a flying-by-the-seat-of-the-pants approach.”® The general consensus was that
computer programming was “the kind of work that is called creative [and]
creative work just cannot be managed.””

The idea that computer programming was somehow an “exceptional”
activity, unconstrained by the standard organizational hierarchy and controls,

forestalled early attempts to automate its processes or to regulate its activities.

* Frederick P. Brooks, The Mythical Man-Month: Essays on Software Engineering (New
York: Addison-Wesley, 1975), 7.

> Gene Bylinsky, “Help Wanted: 50,000 Programmers,” Fortune75, 3 (March, 1967), 141.
®Charles Lecht, The Management of Computer Programming Projects (New York:
American Management Association, 1967), 9.

7 Robert Gordon, “Review of Charles Lecht, The Management of Computer
Programmers,” Dafamation 14, 4 (1968), 200-202.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96 From “Black Art” to Industrial Discipline

We lament the cost of programming; we regret the time it takes. What we
really are unhappy with is the total programming process, not
programming (i.e. writing routines) per se ... A/l the programming
language improvement in the world will not shorten the intellectual
activity, the thinking, the analysis, that is inherent in the programming
process?®

In the early decades of computing there were a number of reasons why
software development projects were generally thought to be unsusceptible to
traditional management approaches. First of all, even the most veteran computer
users had only a few years’ experience with these novel devices. In the early
1950s, the technology of electronic computing changed and developed with
remarkable rapidity. The “best practice” guidelines that applied to one
particular generation of equipment were quickly superceded by a different set of
techniques and methodologies.” Secondly, and perhaps more importantly, the
performance and memory constraints of the first commercial computers
demanded that programmers cultivate a series of idiosyncratic and highly
individual craft techniques designed to overcome the limitations of primitive
hardware. For example, contemporary memory devices were so slow and had
such little capacity that programmers had to develop ingenious techniques to fit
their programs into the available memory space. In order to coax every bit of

speed out of a relatively slow storage device such as a rotating memory drum,

® Willis Ware, “As I See It: A Guest Editorial,” Datamation 11, 5 (1965), 27. Emphasis
added.
? Datamation Editorial, “The Facts of Life,” Datamation 14, 3 (1968), 21.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 97

programmers would carefully organize their coded instructions in such a way as
to assure that the each instruction passed by the magnetic read head in just the
right order and at just the right execution time. Only the best programmers
could hope to develop applications that worked at acceptable levels of usability
and performance. As IBM researcher John Backus famously characterized the
situation, “programming in the 1950s was a black art, a private arcane matter ...
each problem required a unique beginning at square one, and the success of a
program depended primarily on the programmer's private techniques and
inventions.""

This reliance on individual creativity and clever “work-arounds” created the
impression that programming was indeed more of an art than a science. This
notion was reinforced by a series of aptitude tests and personality profiles that
suggested that computer programmers, like chess masters or virtuoso musicians,
were endowed with a uniquely creative ability. Great disparities were
discovered between the productivity of individual programmers. Dr. E.E. David
of Bell Telephone Laboratories spoke for many when he argued that large
software projects could never be managed effectively, because “the vast range of

programmer performance indicated earlier may mean that it is difficult to obtain

' John Backus, “Programming in America in the 1950s - Some Personal Impressions,” in
Nick Metropolis, et al., eds., A history of computing in the twentieth century a collection
of essays (New York: Academic Press, 1980), 126.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98 From “Black Art” to Industrial Discipline

better size-performance software using machine code written by an army of
programmers of lesser than average caliber.” "

This focus on programmer performance contributed to the social
construction of the software crisis as a problem of programmer personnel
selection. In the 1950s the primary crisis facing the industry were quantifiable
manpower shortages; by the 1960s the issue was more qualitative. The problem
was not so much a lack of programmers per se; what the industry was really
worried about was a shortage of experienced, capable developers. One industry
observer went so far as to argue that the “major managerial task is finding - and
keeping - 'the right people’: with the right people, all problems vanish.” **
Programmers were selected for their intellectual gifts and aptitudes, rather than
their business knowledge or managerial savvy. “Look for those who like
intellectual challenge rather than interpersonal relations or managerial decision-
making. Look for the chess player, the solver of mathematical puzzles.” **
Skilled programmers were thought to be effectively irreplaceable, and were
treated and compensated accordingly.

During this period, many corporate programmers enjoyed an unprecedented

degree of personal authority and professional autonomy. “Experience shows

" Naur, et al., Software Engineering, 33.

2 Robert Gordon, “Personnel Selection,” in Fred Gruenberger and Stanley Naftaly, eds.,
Data Processing. Practically Speaking (Los Angeles: Data Processing Digest, 1967), 88.

1 Joseph O'Shields, “Selection of EDP Personnel,” Personnel Journal 44,9 (October
1965), 472.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 99

that high quality individuals are the key to top grade programming,” argued a

1959 Price-Waterhouse study on Business Experience with Electronic Computers:

Why? Purely and simply because much of the work involved is exacting
and difficult enough to require real intellectual ability and above average
personal characteristics... A knowledge of business operations can usually
be obtained by an adequate expenditure of time and effort. Innate ability,
on the other hand, seems to have a great deal to do with a man's capacity
to perform effectively in the fields of computer coding and systems
design.™

Programmers were not only “encouraged to feel they are professionals,” but
they were included as active participants in all phases of application
development, from design to implementation, in order to ensure their
cooperation and enthusiasm.” Systems analysts and programmers were
“professionals doing work that is generally of a higher creative level than most
work found in business today.”"® As professionals with certain highly developed
skills, “each practitioner has a 'personal monopoly' which manifests itself in the
market place.”” For the time being, the power to control the computer rested
with the individual programmer, rather than with the management bureaucracy.

By the beginning of the 1960s, however, developments occurred in both the

technical and social environment of commercial computing that prompted a

*B. Conway, J. Gibbons, and D.E. Watts, Business experience with electronic computers,
a synthesis of what has been learned from electronic data processing installations (New
York: Price Waterhouse, 1959), 81-83.

1> Conway, Business experience with electronic computers, 81.

!¢ Roger Guarino, “Managing Data Processing Professionals,” Personnel Journal
(December, 1969), 972-975.

7 Ibid, 972.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 From “Black Art” to Industrial Discipline

reevaluation of conventional methods of software production. In the first half of
the decade innovations in transistor and integrated circuit technology increased
the memory size and processor speed of computers by a factor of ten, providing
an effective performance improvement of almost a hundred. The falling cost of
hardware allowed computers to be used for more and larger applications, which
in turn required larger and more complex software. As the scale of software
projects expanded, they became increasingly difficult to supervise and control.
They also became much more expensive. Large software development projects
acquired a reputation for being behind-schedule, over-budget, and bug-ridden.
Freed from some of the constraints of earlier technology, the pressing
problems for software developers now appeared to be more managerial than
technical. New perspectives on these problems began to appear in the industry
literature. “There is a vast amount of evidence to indicate that writing- a large
part of programming is writing after all, albeit in a special language for a very
restricted audience - can be planned, scheduled and controlled, nearly all of
which has been flagrantly ignored by both programmers and their managers,”
argued Robert Gordon in a 1968 review article.”® The professional journals of this
period are replete with exhortations towards better software development

management: “Controlling Computer Programming”; “New Power for

18 Gordon, “Personnel Selection,” 200.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 101

(4

Management”; “Managing the Programming Effort”; “The Management of
Computer Programming Efforts.”” Although it was admittedly true “that
programming a computer is more an art than a science, that in some of its aspects
it is a creative process,” this new perspective on software management suggested
that “as a matter of fact, a modicum of intelligent effort can provide a very
satisfactory degree of control.”*

One of the justifications often suggested for this changing attitude toward
programming (and programmers) was basic economic efficiency. Towards the
end of the 1960s the venerable management consulting firm of McKinsey &
Company published a series of reports suggesting that the real reason that most
data processing installations were unprofitable is that "many otherwise effective
top managements...have abdicated control to staff specialists - good technicians
who have neither the operation experience to know the jobs that need doing nor

2721

the authority to get them done right. These reports helped redefine
contemporary understandings of the nature and causes of the software crisis,

turning the focus of debate away from “finding and caring for good

¥ C.I. Keelan, “Controlling Computer Programming,” Journal of Systems Management
(January, 1969); D. Herz, New Power for Management(New York: McGraw-Hill, 1969);
Richard Canning, “Managing the Programming Effort,” EDP Analyzer6, 6 (1968), 1-15;
Charles Lecht, The Management of Computer Programming Projects (New York:
American Management Association, 1967).

¥ Keelan, “Controlling Computer Programming,” 30.

% McKinsey & Company, “Unlocking the Computer's Profit Potential,” Computers &
Automation (April 1969), 33.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102 From “Black Art” to Industrial Discipline

programmers” and squarely towards the problem of programmer management.”
The solution to “unlocking the computer’s profit potential,” according to the
McKinsey & Company, was to restore the proper balance between managers and
programmers: “Only managers can manage the computer in the best interests of
the business. The companies that take this lesson to heart today will be the
computer profit leaders of tomorrow.”*? By reconstructing the software crisis as
a problem of management technique rather than technological innovation, the
McKinsey report also relocated the focus of its solution, removing it from the
domain of the computer specialist and placing it firmly in the hands of
traditional managers.

The 1968 Garmisch Conference irrevocably established software
management as one of the central rhetorical cornerstones of all future software
engineering discourse. The organizers of the conference called for the adoption
by software manufacturers of the “types of theoretical foundations and practical

4

disciplines” traditional in the established branches of engineering.* Fora
number of conference participants, the key word in this provocative manifesto

was “discipline.” In his widely quoted paper on “mass-produced software

2 Service Bureau Corporation, “Find and care for a good programmer, and keep him
happy,” Datamation 10, 7 (1964).

2 McKinsey & Company, “Unlocking the Computer's Profit Potential,” 33.

* Naur, et al., Software Engineering, 7.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 103

components,” Douglas Mcllroy forcefully articulated his plan for

“industrializing” software production:

We undoubtedly produce software by backward techniques. We
undoubtedly get the short end of the stick in confrontations with
hardware people because they are the industrialists and we are the
crofters. Software production today appears in the scale of
industrialization somewhere below the more backward construction
agencies. I think that its proper place is considerably higher, and would
like to investigate the prospects for mass-production techniques in
software.?

Although MclIlroy does not explicitly address issues of professional concern
to occupational programmers, such as status, autonomy, and job satisfaction, his
vision of a software “components factory” invokes familiar images of
industrialization and proletariatization. According to his proposal, an elite corps
of “software engineers” would serve as the Frederick Taylors of the software
industry, carefully orchestrating every action of a highly-stratified programmer
labor force. And like the engineers in more traditional manufacturing
organizations, these software engineers would identify themselves more as
corporate citizens than as independent professionals.

Not every proposed solution to the software crisis suggested at Garmisch
was as blatantly management-oriented as Mcllroy’s. Nevertheless, the theme of
transformation from a craft-based “black art” of programming to the industrial

discipline of software engineering dominated many of the presentations and

Z Ibid.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104 From “Black Art” to Industrial Discipline

discussion. The focus on management solutions reflected —and reinforced —a
larger groundswell of popular opinion that extended far beyond the confines of
the actual conference. The industry literature of the period is replete with
examples of this changing attitude towards software management. Even those
proposals that seemed to be most explicitly technical, such as those advocating
structured programming techniques or high-level language developments,
contained a strong managerial component. Most required a rigid division of
labor and the adoption of tight management controls over worker autonomy.
When a prominent adherent of object-oriented programming techniques spoke of
“transforming programming from a solitary cut-to-fit craft, like the cottage
industries of colonial America, into an organizational enterprise like
manufacturing is today,” he was referring not so much to the adoption of a
specific technology, but rather to the imposition of established and traditional
forms of labor organization and workplace relationships.? The solutions to the
“software crisis” most frequently recommended by managers - among them the
elimination of rule-of-thumb methods (i.e. the “black art” of programming), the
scientific selection and training of programmers, the development of new forms

of management, and the efficient division of labor — were not fundamentally

% Brad Cox, “There is a Silver Bullet,” Byte 15, 10 (1990), 209.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 105

different from the four principles of scientific management espoused by

Frederick Taylor in an earlier era.?

/A Aristocracy, Democracy, and Systems Design

It would be impossible to describe all of the numerous approaches to
programmer management that were developed in this and subsequent periods.
It is enough for the purposes of this dissertation to describe the defining
characteristics of a few of the most prominent methodologies: the hierarchical
system; the chief programmer team approach; and the adaptive programmer
team (or “egoless” programming) model. The hierarchical systems approach,
originally developed for large, government-sponsored programming projects at
the System Development Corporation and IBM Federal Systems Division,
resembles the highly stratified, top-down organizational structure familiar to
most conventional corporate employees. The chief programmer team, although
it was also developed at IBM Federal Systems, reflects an entirely different

approach to programmer management oriented around the leadership of a single

¥ Taylor’s four principles of scientific management can easily be mapped on the
software management literature of this and other periods. In brief, his four principles
were: 1) develop a science for each element of work to replace traditional rule-of-thumb
methods; 2) scientifically select, train, and develop the workers, rather than let them
define their own work practices; 3) cooperate with the workers to insure adherence to
the new scientific principles; 4) establish an equal division of the work and the
responsibility between management and labor, with management taking over all the
tasks for which they are better suited. See Frederick Winslow Taylor, The Principles of
Scientific Management (New York: Harper Brothers, 1911).

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106 From “Black Art” to Industrial Discipline

managerially-minded “super-programmer.” The adaptive team approach was
popularized as “egoless” programming by the iconoclastic Gerald Weinberg in
his 1971 classic The Psychology of Computer Programming.”® Weinberg
proposed an open, “democratic” style of management that emphasized
teamwork and rotating leadership.

Although it is possible to arrange these approaches into a roughly
chronological order, it is not my intention to suggest that they represent any
simple “evolution” towards increasing managerial control or economic
efficiency. Each of these management methodologies represents separate but
interrelated visions about how computer programming as an economic activity,
and computer programmers as aspiring professionals, could best be integrated
into the established social and technological systems of the traditional
corporation. Each of these approaches built on, and responded to, the
innovations and shortcomings of the others. They also reflected the backgrounds
and aspirations of their advocates and developers. By studying carefully the
salient features of each of these three methodologies, we will be better able to
situate them in their particular social and historical context, and hence to
understand more fully their contribution to contemporary debates about the

nature and causes of the software crisis.

% Gerald Weinberg, The Psychology of Computer Programming (New York: Van
Nostrand Rheinhold, 1971).

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 107

Armies of Programmers

The first concerted attempts to manage software development projects using
established management techniques occurred at the government- and military-
sponsored SAGE (Semi-Automatic Ground Environment) air-defense project.
The SAGE project was the heart of an ambitious “early warning” radar network
intended to provide an immediate and centralized response to sneak attacks
from enemy aircraft. The plan was to develop a series of computerized tracking
and communications centers that would coordinate observation and response
data from a widely dispersed system of interconnected perimeter warning
stations. First authorized by Congress in 1954, by 1961 the SAGE system had
cost more than $61 billion to develop and operate, and required the services of
over 200,000 employees. The software that connected the specially designed,
real-time SAGE computers was the largest programming development then
under way. The System Development Corporation (SDC), a RAND Corporation
spin-off company responsible for developing this software, had to train and hire
almost 2,000 programmers. In the space of a few short years the personnel
management department at SDC effectively doubled the number of trained
programmers in the United States.

In order to effectively organize an unprecedented number of software

developers, SDC experimented with a number of different techniques for

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108 From “Black Art” to Industrial Discipline

managing the programming process. For the most part, however, SDC relied on
a hierarchical structure that located most programmers at the lowest levels of a
vast organizational pyramid built with layer upon layer of managers.” The top
of this hierarchy was occupied by non-technical administrators. The middle
layers were peopled by those EDP [electronic data processing] personnel who
had exhibited a desire or aptitude for management. In other words, the
managers in the SDC hierarchy were self-selected as being either uninterested or
uncommitted to a long-term programming career. The management style in this
hierarchical structure was generally autocratic. Managers made all of the
important decisions. They assigned tasks, monitored the progress of
subordinates, and determined when and what corrective actions needed to be
taken.

This hierarchical approach to management was attractive to SDC executives
for a number of reasons. First of all, it was a familiar model for government and
military subcontractors. Secondly, it was often easier to justify billing for a large
number of mediocre low-wage employees than a smaller number of excellent but
expensive contractors. Finally, and perhaps most importantly, the “Mongolian
horde” approach to software development corresponded nicely with

contemporary constructions of the root causes of the burgeoning “software

» Claude Baum, The Systems Builders: The Story of SDC (Santa Monica, CA: System
Development Corporation, 1981), 52.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 109

turmoil.”* In the early part of the 1950s, the major problem facing the computer
industry was believed to be programming training and recruitment. At the 1954
Conference on Training Personnel for the Computing Machine Field, E.P. Little
of Wayne State University warned industry managers that “estimates of
manpower needs for computer applications...[are] astounding compared to the
facilities for training people for this work.”* W.H. Wilson of General Motors
observed “a universal feeling that there is a definite shortage of technically
trained people in the computer field.”* The widely perceived “gap in
programming support” was thought to be a problem of quantity rather than
quality.® It was only Iater that the emphasis shifted from programming training
to programmer selection, from “where do we find programmers,” to “where do
we find the right programmers.”

Faced with a shortage of experienced programmers, SDC embarked on an
extensive programming of internal training and development. Most of their
trainees had little or no experience with computers; in fact, many managers at
SDC preferred it that way. Like many corporations in the 1950s, they believed

that “It is much easier to teach our personnel to program than it is to teach

¥ Also known as the “Chinese army” approach, at least until the phrase became
unpopular in the early 1950s.

3 Arvid W. Jacobson, ed., Proceedings of the First Conference on Training Personnel for
the Computing Machine Field held at Wayne University, Detroit Michigan, June 22 and
23, 1954 (Detroit: Wayne University Press, 1955), 79.

%2 Jacobson, Proceedings of the First Conference on Training Personnel, 21.

¥ Robert Patrick, “The Gap in Programming Support,” Datamation 7, 5 (1961), 37.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110 From “Black Art” to Industrial Discipline

outside experienced programmers the details of our business.”* In any case, in
the period between 1956 and 1961 the company trained 7,000 programmers and
systems analysts. At a time when all the computer manufacturers combined
could only provide 2,500 student weeks of instruction annually, SDC devoted
more than 10,000 student weeks to instructing its own personnel to program.®

The apparent success that SDC achieved in mass-producing programming
talent reinforced the notion that a hierarchical approach was the suitable model
for large-scale software development. If large quantities of programmers could
be produced on demand, then individual programmers were effectively
anonymous and replaceable. A complex system like SAGE could be broken
down into simple, modular components that could be easily understood by any
programmer with the appropriate training and experience. The principles
behind the approach were essentially those that had proven so successful in
traditional manufacturing: replaceable parts, simple and repetitive tasks, and a
strict division of labor.

The hierarchical model of software development was adopted by a number
of other major software manufacturers, particularly those involved in similarly

large military or government projects. It is not clear how direct was the

* Baum, 7he Systems Builders, 48.
* T.C. Rowan, “The Recruiting and Training of Programmers,” Datamation 4, 3 (1958),
16-18.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 111

connection between SDC and these other manufacturers. SDC certainly had a
role in training a large number of programmers and EDP managers. “We trained
the industry!” boasted SDC veterans: “Whatever company I visit, I meet two or
three SDC alumni.”* The labor historian Philip Kraft attributes much of what
he refers to as the “routinization” of programming labor to the “degrading”
influence of military-industrial organizations such as SDC. He describes the SDC
“software factories” as “the first systematic, large-scale effort on the part of EDP
users to transform the highly idiosyncratic, artisan-like occupation” of computer
programming into “one which more closely resembled conventional industrial
work.”¥ He argues that SDC played a significant role in diffusing and
popularizing the hierarchical approach to software engineering management.
Whether the claim that SDC policies and SDC personnel played a direct role
in diffusing the hierarchical system of management throughout the computer
industry was valid, similar top-down methodologies were widely adopted. In
the IBM Federal Systems division, a multi-level organizational structure was
used on all large government projects. IBM manager Philip Metzger provided a
detailed description of the Federal Systems approach in his highly popular

textbook Managing a Programming Project, which went through three editions

% Baum, The Systems Builders, 47.
% Philip Kraft, Programmers and Managers: The Routinization of Computer
Programming in the United States (New York: Springer-Verlag, 1977), 39.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112 From “Black Art” to Industrial Discipline

in the period between 1973 and 1996.% A 1974 article on “Issues in
Programming Management” that appeared in the respected industry newsletter
EDP Analyzer listed the hierarchical systems approach as one of the most
commonly implemented software management methodologies.* Joel Aron,
another IBM Federal Systems veteran, used the hierarchical model as the basis
for his series of books on The Program Development Process.”

The hierarchical approach to software development was attractive to
managers because it corresponded nicely with the contemporary management
theories. In the first half of the twentieth century, corporate management
became a professional activity dominated by specialists and experts. As the
historian Alfred Chandler has famously described it, “the existence of a
managerial hierarchy is a defining characteristic of the modem business

enterprise.”*

These professional managers developed a shared culture and
value system reinforced by an increasingly formalized program of training and
education. They exerted a high degree of control over the work practices of their

subordinates, “scientifically managing” all aspects of the business and

3 Philip Metzger, Managing a Programming Project (Englewood Cliffs, N.J: Prentice-
Hall, 1973).

¥ Richard Canning, “Issues in Programming Management,” EDP Analyzer12, 4 (1974),
1-14.

“Joel Aron, The Individual Programmer, The Systems Programming Series (Reading,
MA: Addison-Wesley, 1983); Joel Aron, Part II: The Programming Team, The Program
Development Process (Reading, MA: Addison-Wesley, 1983).

t Alfred P. Chandler, The Visible Hand: The Managerial Revolution in American
Business (Cambridge, MA: Belknap Press, 1977), 7.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 113

manufacturing process. EDP managers assumed that the techniques and
structures that appeared to work so efficiently in traditional industries would
translate naturally into the software development department. It was only a
matter of identifying and implementing the “one best way” to develop software
components.

Embedded in the hierarchical model of management were a series of
assumptions about the essential character of programming as an occupational
activity. Implied in the suggestion that the structures and procedures of a
traditional manufacturing organization could be seamlessly mapped on to the
EDP department was a belief that the skills and experience required to program
a computer were, in effect, not very different from those required to assemble an
automobile. Managers could define, in the minutest detail, the specifications that
the programmers would follow. The programmers, in turn, need only be trained
to perform a very limited and specialized function. Individual programmers
were looked upon as interchangeable units.* They lacked a distinct
professional identity. The path to advancement in the hierarchical system (if
indeed there actually was one available to mere programmers) was through
management. Certification programs were desirable in order to ensure a

minimum levels of competence, but only as means for assuring a standard

 Richard Canning, “Issues in Programming Management.”

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114 From “Black Art” to Industrial Discipline

degree of performance and product. Programmers were encouraged to be
professionals only to the extent that being a professional meant self-discipline, a
willingness to work long hours with no overtime pay, and loyalty to the
corporation and obedience to supervisors. *

The notion that programmers could be treated as unskilled clerical workers
was reinforced by a series of technical developments intended to allow managers
to mechanically translate high-level systems designs into the low-level machine
code required by a computer. For example, one of the alleged advantages of the
COBOL programming language frequently touted in the literature was its ability
to be read, understood — and perhaps even written — by informed managers.*
More than a fashionable management technique, the hierarchical organizational
model was a philosophy about what programming was and where programmers
stood in relation to other corporate professionals. It embodied —in a complex of
interrelated cultural, technical, and political systems - a particular social
construction of the nature and causes of the software crisis.

Despite the obvious appeal that the theory of hierarchical systems held for
conventional managers, it rarely worked as intended in actual practice.

Although managers would have preferred to think of programming as routine

* Richard Canning, “Professionalism: Coming or Not?,” EDP Analyzer 14, 3 (1975), 1-12.
“ Brian Rothery, Installing and Managing a Computer (London: Business Books, 1968),

80.
% Gordon, “Personnel Selection,” 85.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 115

clerical work and programmers as interchangeable laborers, experience
suggested that in reality the situation was quite different. I have already
described how, in the late 1950s and early 1960s, programming had acquired a
reputation as being a uniquely creative activity requiring “real intellectual ability
and above average personal characteristics.”* “To 'teach’ the equipment, as is
amply evident from experience to date, requires considerable skill, ingenuity,
perseverance, organizing ability, etc. The human element is crucial in
programming.”* Anecdotal evidence suggesting that skilled programmers were
essential elements of software development was supported by numerous
empirical studies produced by industrial psychologists and personnel experts.

The realization that computer programming was a more intellectually
challenging activity than was originally anticipated threw a monkey wrench into
the elaborate hierarchical systems that managers had constructed. Whereas the
“software turmoil” of the 1950s was attributed largely to numerical shortages of
programmers, the “programmer quality” problems of the 1960s demanded a
subtly different construction of the root causes of the “software crisis.” The
problem could still be defined as a management problem requiring a

management-driven solution. What had changed was the prevailing conception

6 Conway, Business experience with electronic computers, 81.
Y7 1bid, 81-82.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116 From “Black Art” to Industrial Discipline

of what programmers were and what they did. A 1967 article in Fortune

Magazine laid out the issue in plain language for its executive readership:

The massive attack on systems software poses difficult management
problems. On the one hand, a good programmer, like a writer or
composer, works best independently. But the pressure to turn out
operating systems and other programs within a limited time make it
necessary to deploy huge task forces whose coordination becomes a
monstrous task. The problem is further complicated by the fact that there
is no “best way” to write either a systems or an application program, or
any part of such program. Programming has nowhere near the discipline
of physics, for example, so intuition plays a large part. Yet individual
programmers differ in their creative and intuitive abilities. **

Companies that implemented hierarchical systems methodologies also
discovered that programmers were not content with the professional identity
that these systems imposed upon them. Turnover rates in the industry reached
crisis proportions, averaging close to 20 percent annually.* One large employer
experienced a sustained turnover rate of 10% per month.* The problem,
according to one SDC survey of termination interviews, was that programmers
working in hierarchical organizations “did not foresee for themselves the
opportunities they want for professional growth and development...or for

s 51

promotion and advancement. The career aspirations of the programmers

8 Bylinsky, “Help Wanted: 50,000 Programmers,” 141.

“ H.V. Reid, “Problems in Managing the Data Processing Department,” Journal of
Systems Management (May, 1970), 8; Richard Canning, “Managing Staff Retention and
Turnover,” EDP Analyzer15, 8 (1977), 1-13.

* Datamation Editorial, “EDP's Wailing Wall,” Datamation 13, 7 (1967), 21.

' Baum, The Systems Builders, 52.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 117

conflicted with the occupational role they had been assigned by the managers.
Many preferred to pursue professional advancement within programming,
rather than away from programming. In the hierarchical system, the higher an
individual advanced, the more they worked as administrators rather than

technologists.

Superprogrammer to the rescue...

The advocates of hierarchical management received their most devastating
blow in the early 1970s, with the publication of Frederick P. Brooks’ 7he Mythical
Man-Month. Frederick Brooks was the project manager for the IBM
Corporation’s — and the world’s - most ambitious software development project
to date: the IBM OS/360 operating system. In the early half of the 1960s, IBM
began to feel increasing competitive pressure from smaller computer
manufacturers such as Control Data Corporation (CDC) and Honeywell. CDC
had succeeded in challenging IBM’s high-end mainframe business with a fast
machine (the CDC 6600) with a superior price-performance ratio. In 1963
Honeywell announced their H-200 machine, which posed a serious threat to
IBM’s lucrative low-end 1401 computers. The H-200 was 30% cheaper,
significantly more powerful, and offered 1401 software compatibility via its

“Liberator” automatic program translator. In response to these changing market

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118 From “Black Art” to Industrial Discipline

conditions, IBM decided to integrate all of its products into a single, compatible
series: the System 360 machines.

The IBM System /360 has been referred to as “the computer that IBM made,
that made IBM.” * The System /360 systems solved a number of problems for
IBM and its customers. It filled in the gaps in the IBM line of product offerings
by providing an entire range of hardware and software compatible computers
ranging from the low-end model 360/20 (intended to compete directly with the
Honeywell H-200) to the model 360/90 supercomputer, which compared
favorably to the CDC-6600. By making all of these machines software compatible
(theoretically, at least) IBM provided an inexpensive upgrade path for its
customers. The client could purchase just the amount of computing power that
they needed, knowing that if their needs changed in the future they could simply
transfer their existing applications and data to the next level of System /360
hardware. They could also make use of their existing peripherals, such as tape
readers and printers, without requiring an expensive upgrade.

The System /360 was an enormously risky and expensive undertaking. The
Fortunejournalist Tom Wise referred to it as “IBM’s $5 Billion Gamble.” He
quoted one senior IBM manager as calling it the “we bet the company” project.”

The riskiest and most expensive component of System /360 development was the

*2 Martin Campbell-Kelly, in a 1991 lecture.
* Thomas Wise, “IBM’s $5,000,000,000 Gamble,” Fortune (September 1966), 226.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 119

OS/360 operating system. In the years between 1963 and 1966, over 5,000 staff
years of effort went into the design, construction, and documentation of OS/360.
When OS/360 was finally delivered in 1967, nine months late and riddled with
errors, it had cost the IBM Corporation half a billion dollars — four times the
original budget — “the single largest expenditure in company history.”*
Although the System/360 project turned out to be a tremendous success for
IBM, sealing their position of leadership in the commercial computer industry for
the next several decades, the OS/360 project was generally considered to be a
financial and technological disaster. The costs of the OS/360 debacle were

human as well as material:

The cost to IBM of the System /360 programming support is, in fact, best
reckoned in terms of the toll it took on people: the managers who
struggled to make and keep commitments to top management and to
customers, and the programmers who worked long hours over a period of
years, against obstacles of every sort, to deliver working programs of
unprecedented complexity. Many in both groups left, victims of a variety
of stresses ranging from technological to physical. *

The highly-publicized failure of the OS/360 project served as a dramatic
illustration of the shortcomings of the hierarchical management method.
Techniques that had worked well on an application requiring 10,000 lines of code

failed miserably when applied to a million code line project. Faced with serious

% Thomas Watson, Jr., quoted in Campbell-Kelly and Aspray, Computer, 199.
> Emerson Pugh, Lyle Johnson, and John Palmer, /BM’s 360 and Early 370 Systems
(Cambridge, MA: MIT Press, 1991), 336.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120 From “Black Art” to Industrial Discipline

schedule slippages, quality problems, and unanticipated changes in scope, the
0OS/360 managers did what traditional manufacturing managers were
accustomed to doing: they added more resources. The only noticeable result was
that the project fell more and more behind schedule.

The Mythical Man-Month is OS/360 project leader Frederick Brooks’s post-
mortem analysis of the failures of traditional hierarchical management. Itis one
of the most widely-read and oft-quoted references on the practice of software
engineering. The mythical man-month in the title refers to the commonly held-
notion that progress in software development projects occurs as a function of
time spent times the number of workers allocated - the implication being that
more workers equaled faster production. Brooks dismissed this assumption with
now-famous Brooks’s Law, one of the most memorable aphorisms in the lore of
software development: Adding manpower to a late software project makes it
later. Or to use one of Brooks’s more earthy metaphors, “the bearing of a child
takes nine months, no matter how many women are assigned.”*

The highly-quotable Brooks’s Law was neither the only, nor even the most
significant, of the insights provided in The Mythical Man-Month. Brooks did
more than criticize existing methodologies; he provided an entirely new model

for understanding software development management. Brooks was firmly

% Brooks, The Mythical Man-Month, 17.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 121

convinced that there was a wide disparity in performance among individual
programmers. He believed that small teams of sharp programmers were
substantially more productive than much larger groups of merely mediocre
performers. He also recognized, however, that even the best small team could
only accomplish so much in any given period of time. The small team approach
simply did not scale well onto larger projects. The problem of scalability was the
heart of the “cruel dilemma” facing project managers: “For efficiency and
conceptual integrity, one prefers a few good minds doing design and
construction. Yet for large systems one wants a way to bring considerable
manpower to bear, so that the product can make a timely appearance.”” And yet
the Mongolian Horde model of throwing programming resources — so-called
“man-months” — at projects was also obviously insufficient. What was needed
was a way to apply the efficiency and elegance of the small team approach to the
problems of large-project management.

Brooks proposed the adoption of what he called the “surgical team” model
of software development. In doing so he borrowed heavily from the work of
IBM manager and researcher Harlan Mills, who had earlier developed the “chief

programmer team” concept.® In both versions of the chief programmer team

*7 Ibid, 31.
% The CPT concept was first introduced as one of two experimental “superprogrammer
projects by J.D. Aron in a paper given at the 1969 Rome Conference. The first

rr

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122 From “Black Art” to Industrial Discipline

(CPT) approach, a single, expert programmer was responsible for all major
design and implementation decisions involved with system development. The
“chief programmer” (or surgeon), defined the program specifications, designed
the program, coded it, tested it, and wrote the documentation. He was assisted
in his tasks by an operating team of support staff. His immediate assistant (or
copilot) was only slightly less expert than the chief programmer himself. He was
the chief programmer’s mirror and alter ego, serving not only as an emergency
backup or stand-in, but also as an advisor, discussant, and evaluator. Although
the assistant knew the program code intimately and may even have written some
of it, it was the chief programmer who was ultimately responsible for it.

"

Other members of the Brooks’s “surgical” team included an administrator,
who handled schedules, money, personnel issues, and hardware resources; an
editor, who provided the finishing touches to chief programmer’s
documentation; two secretaries who dealt with correspondence and filing; a
program clerk who maintained all the technical records for the project; a

“toolsmith” who built, constructed, and maintained the interactive tools used by

the rest of the team for programming, debugging, and testing; a tester, who

experiment involved a 30 man-year project requiring 50,000 instructions. Harlan Mills
attempted to complete the project himself (using a prototype ‘surgical team’) in only six
months. The project eventually required about six man-years of effort to complete, and
was considered a moderate success. The second experiment mentioned by Aron at the
Rome conference turned out to be the famous New York Times project, which
established the reputation of the chief programmer team approach when it was
publicized by F.T. Baker in 1971.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 123

served both as the chief programmer’s adversary and assistant, and who
developed test plans to challenge the integrity of the program design and
devised test data for day-to-day debugging; and finally, the “language lawyer,”
who delighted in the mastery of the intricacies of a programming language. The
language lawyer, unlike the chief programmer, was not involved in “big-picture”
issues or system design; his responsibility was finding “neat and efficient ways
to use the language to do difficult, obscure, or tricky things.” Language lawyers

were usually called in only for special, short-term assignments.”

Figure 2.4: Communications Patterns in the Chief Programming Team

* Brooks, The Mythical Man-Month, 34-35.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124 From “Black Art” to Industrial Discipline

The advantage to the chief programmer team approach, according to Mills
and Brooks, was that it dramatically simplified communications between team
members. Whereas a large, hierarchical organization of X number of employees
could require as many as (X*-X)/2 independent paths of communication, in the
CPT model all essential information passed through the person of the chief
programmer. Figure 2.4 illustrates the central role that that the chief programmer
played in the organization of the programming team: all team members report to
him directly, and did not communicate with each other directly.

By centralizing all decision-making in the person of the chief programmer,
the CPT approach assured the maintenance of the program’s structural integrity.
Brooks compared the conceptual architecture of the typical large software project
to the haphazard design of many European cathedrals; the patchwork structure
of these cathedrals revealed an unpleasant lack of continuity, reflecting the
different styles and techniques of different builders in different generations.
Brooks preferred the architectural unity of the cathedral at Reims, which derived
“as much from the integrity of design as from any particular excellences.” This
integrity was achieved only through the “self-abnegation of eight generations of
builders,” each of whom “sacrificed some of his ideas so that the whole might be

of pure design.”® Using wonderfully evocative Biblical language, Brooks

% Ibid, 42.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 125

extolled the virtues of a unified conceptual design: “As the child delights in his
mud pie, so the adult enjoys building things, especially things of his own design.
I believe that this delight must be an image of God’s delight in making things, a
delight shown in the distinctiveness and newness of each leaf and each
snowflake.”® Only the chief programmer team approach could guarantee such a
degree of uncompromised architectural integrity.

The chief programmer team approach differed from hierarchical systems
methodologies in a number of essential characteristics. Whereas the hierarchical
model allowed for (and in fact encouraged) the use of novice programmers, the
chief programmer team was built entirely around skilled, experienced
professionals. This implied a radically different approach to professional
development. Each member of the team was encouraged to develop within their
own particular disciplinary competency; i.e. it wasn’t necessary to become a
surgeon to advance one’s career. For example, an aspiring language lawyer
could continue to focus on his technical specialty without feeling pressure to
transfer into management. The chief programmer team approach embodied the
belief that computer programming was a legitimate, respectable profession.

The chief programmer team also reflected changing contemporary notions

about the nature of programming ability. The primary justification for using

S Ibid, 7.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126 From “Black Art” to Industrial Discipline

small teams of experienced programmers rather than large hordes of novices was
the belief that one good programmer was worth at least ten of his average
colleagues. In the person of the chief programmer, the innate technical abilities
of the “superprogrammer” were merged with the organizational authority of the
traditional manager. The chief programmer was both a technical genius and
expert administrator. Programming aptitude could not be abstracted from its
embodiment in particular individuals; skilled programmers were anything but
“replaceable components” of an automated “software factory.” In the elite
“surgical team” model, the contributions of talented professionals far
outweighed those provided by traditional management techniques or
development methodologies.

Besides endowing computer programmers with considerable institutional
power, The Mythical Man-Month reinforced the notion that programming was
an exceptional activity, unlike any other engineering or manufacturing
discipline. His suggestion that programming was akin to poetry strongly
implied that programming was not an activity that could be readily
systematized. What Brooks proposed was the adoption of useful tools and
techniques, not some overarching methodology. As he later declared in a

famous article entitled “No Silver Bullet,” although the management of large

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 127

programming projects could be improved incrementally, there were no easy
solutions to be derived from the lessons of traditional manufacturing.®

Like the hierarchical systems model, the chief programmer team was
intimately linked to specific techniques and technologies. Since all major
decisions relating to both design and implementation had to be made by a single
“superprogrammer”, the chief programmer team approach effectively demanded
the adoption of top-down development techniques. Top-down programming
was one of the foundational principles of the “structured programming”
approach to software engineering advocated by many academic computer
scientists in this period. The essence of top-down programming was the concept
of abstraction: by proceeding step-by-step from general design goals to the
specific implementation details, a systems architect could individually manage
the otherwise unmanageable complexity of a large software development project.
The use of top-down programming techniques enabled the authoritarian chief
programmer to maintain the “architectural integrity” that Brooks believed was
so central to the design of useful and beautiful software programs. The hey-day
of the structured programming movement was coincident with the publication of

The Mythical Man-Month, and the attractiveness of the “surgical team” approach

2 Frederick P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering,” IEEE Computer, April, 1987.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128 From “Black Art” to Industrial Discipline

to management was reinforced by, and helped reinforce, the popularity of
structured programming as a development technology.

In addition to borrowing heavily from the established techniques and
technologies of structured programming, the chief programmer model also help
define technological innovations of its own. The development support library
(DSL) was a system of documents and procedures that provided for the
“isolation and delegation” of secretarial, clerical, and machine operations (see
Figure 2.5 for a structural overview of the DSL).*® Basically, the DSL was a set of
technologies (including coding sheets, project notebooks, and computer control
cards) that facilitated communications within the development team. The DSL
was envisioned as a means of further centralizing control in the hands of the

chief programmer:

The DSL permits a chief programmer to exercise a wider span of control
over the programming, resulting in fewer programmers doing the same
job. This reduces communications requirements and allows still more
control in the programming. With structured programming, this span of
detailed control over code can be greatly expanded beyond present
practice; the DSL plays a crucial role in this expansion.*

By providing a core set of public programs and documents that were highly

visible to all members of the “surgical team,” the DSL was supposed to

% F. Terry Baker and Harlan Mills, “Chief Programmer Teams,” Datamation 19, 12
(1973), 198-199. In earlier accounts the DSL is referred to as the Programming Production
Library (PPL).

& Ibid, 200.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 129

discourage the “traditional ad hoc mystique” associated with conventional craft-
oriented programming.*® The chief programmer could read, understand, and
validate all of the work done by his subordinates. The technology of the DSL
was clearly intended to reinforce a conventional management agenda: the
transfer of control over the work practices of programmers to the hands of the
managerial “superprogrammer.” In language remarkably reminiscent of the
“head versus hand” dialectic emphasized by Karl Marx and his disciples, one
proponent of the chief programmer team approach described the DSL as having

been “designed to separate the clerical and intellectual tasks of programming.” *

Top-Dawn
Devclopment

(SP appiicd to 4
complete program system}

Structured Programming

(Applned to individual progriam modules)

f Dexelopment Support Librury f

Figure 2.5: The Development Support Library

% Ibid, 201.
% Clement McGowan and John Kelly, Top-Down Structured Programming Techniques
(New York: Petrocelli/Carter, 1975), 148.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130 From “Black Art” to Industrial Discipline

Although the chief programmer team received much attention in the
industry literature, it does not seem to have been widely or successfully
implemented.”” The original concept had been popularized by F.T. Baker in a
series of articles documenting the successful implementation of the approach by
IBM manager Harlan Mills. Mills had been the chief programmer in a team that
developed a computerized information bank application for the New York
Times. Mills claimed to accomplished in 22 months what a traditionally,
hierarchically managed group would have required at least several more years of
calendar time to develop. Baker’s favorable reports on the New York Times
project, which involved 83,000 lines of code and eleven man-years of effort,
convinced many computer professionals of the scalability of the chief
programmer team approach. The project was portrayed as having high
productivity and low error rates, although questions later arose about the
accuracy of Baker’s assessment; Mills” system eventually proved unsatisfactory
and was replaced with a less ambitious system.® For the time being, however,
the New York Times system was considered to be proof-positive of the efficiency

of the chief programmer approach.

%7 B.S. Barry and J.J. Naughton, “Chief Programmer Team Operations Description,” U.S.
Alir Force, Report No. RADC-TR-74-300, v. 10 (of 15), 12-13.

% Stuart Shapiro, “Splitting the Difference: The Historical Necessity of Synthesis in
Software Engineering,” Annals of the History of Computing 19, 1 (1997), 25.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 131

Several objections to the chief programmer team approach were raised in the
contemporary industry literature, however. The first is that it was difficult to find
individuals with enough talent and energy to fulfill all of the functions required
of the chief programmer.® The few who did exist were very expensive, and were
not interested in working on small computers and mundane applications. A
second problem was a perceived over-dependence on key individuals implied in
the chief programmer team approach: “What happens if [our Superprogrammer]
snaps up a more lucrative offer elsewhere? He'll likely take our back-up
programmer with him, leaving us high-and-dry.”” A number of observers
suggested that the “surgical team” model led to excessive specialization.” The
computer scientist C.A.R. Hoare derided the small-team approach as a retreat
towards “to the age of the master craftsman - more fashionably known as a chief
programmer.” > There were widespread doubts about the ability of the small-

team approach to scale-up to the needs of large development efforts.

® Barry Boehm, “Software Engineering,” IEEF Transactions on Computers 25,12 (1976),
349; Edward Yourdon, ed., C/assics in Software Engineering (New York: Yourdon Press,
1979), 63.

J.L. Ogdin, “The mongolian hordes versus superprogrammer,” Infosystems (December
1973), 23.

7! Daniel Couger and R Zawacki, “What Motivates DP Professionals?,” Datamation 24,9
(1978), 116-123; Richard Canning, “Issues in Programming Management,” EDP Analyzer
12,4 (1974), 1-14.

72 Anthony Hoare, “Keynote Address: Software Engineering,” 3rd International
Conference on Sofware Engineering Proceedings (1974), 1-4.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132 From “Black Art” to Industrial Discipline

The most revealing criticisms of the chief programmer team system,
however, had to do with the ways in which the presence of an elite
administrator/programmer disrupted existing patterns of managerial authority:
“The CPT [chief programmer team] perpetuates the prima donna image of the
programmer. Instead of bringing the programmer into the organization's fold, it
isolates and alienates him by encouraging the programmer to strive for a
superhero image.”” The chief programmer team allowed for little participation
by non-technical administrators. A 1981 textbook on Managing Software
Development and Maintenance corrected this perceived over-dependence on
technical personnel by proposing a revised chief programmer team (RCPT) in
which "the project leader is viewed as a leader rather than a 'super-

programmer.'”7*

...whereas the chief programmer is an expert programmer, the project
leader is an expert conceptualizer, designer, and project manager, but not
necessarily a “super-programmer.” Because he possesses both project
management and technical skills and because his programming tasks have
been reassigned to other team members, he is able to direct, oversee, and
review all technical functions.”

The RCPT approach was clearly intended to address a concern faced by many

traditionally trained department-level managers; namely, that top executives had

7 Carma McClure, Managing Software Development and Maintenance (New York: Van
Nostrand Rheinhold, 1981), 77.

7 Ibid, 77-78.

7 Ibid, 86.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 133

“abdicated their responsibility and let the “computer boys” take over.””® As will
be shown, it was this fear of the loss of control over valuable occupational
territory that most determined contemporary reactions to proposed managerial

solutions to the software crisis.

Computer Programming as a Human Activity

It is clear why the hierarchical system of management appealed to traditional
managers: by treating software development as just another large-scale
technological manufacturing project, it posed no threat to existing relationships
of power and authority. It is equally apparent why so many elite programmers
and academic computer scientists preferred the chief programmer team
approach, which positioned them at the highest levels of both the technical and
managerial pyramid. What is not so obvious, however, is which of these two
organizational structures the average working programmer would have
supported. Neither offered much in terms of professional opportunity. The
hierarchical model unapologetically attempted to make their work as routine and
mechanical as possible; the chief programmer team provided a real creative
outlet for a single superprogrammer only. For moderately skilled programmers
attempting to establish for themselves a legitimate professional identity that

would provide them with autonomy and status, both models were equally

’¢ John Golda, “The Effects of Computer Technology on the Traditional Role of
Management,” (MBA thesis, Wharton School, University of Pennsylvania, 1965), 34

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134 From “Black Art” to Industrial Discipline

uninviting. What was needed was an alternative organizational model that
could simultaneously support two seemingly contradictory agendas: increased
managerial control over the “irrational” programming process, and ongoing
support for the independent professional authority of programmers.

In 1969, the programmer and computing consultant Gerald Weinberg
published 7he Psychology of Computer Programming. The book claimed to
present the first detailed empirical study of computer programming as a
complex human activity, and indeed, although Weinberg was neither a
psychologist nor ethnographer, his observations appear to be remarkably
accurate and insightful.” At the very least his work was well received by
practitioners, whose personal experiences seem to have resonated with the
anecdotes provided by Weinberg. The Psychology of Computer Programming
has been widely cited as an accurate description of what really went on in actual
programming projects.

Weinberg’s book did more than simply describe existing attitudes and
practices, however. It also proposed a new method for organizing and managing
teams of software developers. The problem with existing hierarchical methods
of software production, according to Weinberg, was that they encouraged

programmers to become “detached” from the social environment - and overly

77 At the time, Weinberg was serving as a programming instructor at the Institute for
Advance Technology at SUNY Binghampton.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 135

possessive of their software. When programmers invest so much of themselves
in their programs, Weinberg suggested, they lose the ability to evaluate their
creations objectively. The immediate result was bad software —and ultimately a
software crisis. “Programmers, if left to their own devices, will ignore the most
glaring errors in their output — errors that anyone else can see in an instant.””
The solution to the crisis provoked by “property-oriented” programming, argued
Weinberg, was the adoption of the “egoless programming team”, in which every
programmer is equal and where all of the code is “attached” to the team, rather
than to the individual. By opening up the programming process to self-reflection
and criticism, the egoless (or adaptive) programming model would increase
efficiency, eliminate errors, and enhance communication — all without inhibiting
the creative abilities of programmers.

Although egoless programming represented a relatively radical departure
from traditional software development methodologies, it was predicated on
fairly conventional notions about the nature of programming ability. There was
little doubt, according to Weinberg, that the majority of people in programming
were “detached” personality types who preferred to be left to themselves. This
tendency towards detachment was reinforced “both by personal choice and

because hiring policies for programmers are often directed toward finding such

”® Weinberg, The Psychology of Computer Programming, 56.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136 From “Black Art” to Industrial Discipline

people.”” This detachment from people often led programmers to become
excessively attached to their products. The “abominable practice” of attaching
their names to their software (as in Jules’ Own Version of the International
Algebraic Language, better known as the JOVIAL programming language)
offered evidence of the programmer’s inability to disassociate themselves from
their creations.® This proprietary sense of “ownership” on the part of the creator
was not necessarily an unusual or even undesirable tendency - after all, artists
“owned” paintings, authors “owned books,” and architects “owned” buildings.
In many cases these attributions led to the admiration and emulation of good
workers by lesser ones. What was different about computer programs, however,
was that they were “owned” exclusively by their creators. Good programs,
unlike good literature, were never read by anyone other than the author. Thus,
according to Weinberg, “the admiration of individual programmers cannot lead
81

to an emulation of their work, but only to an affectation of their mannerisms.

Junior programmers were unable to benefit from the wisdom and experience of

7 Ibid, 53.

% The JOVIAL programming language was created for the United States Air Force in the
late 1950s by the System Development Corporation (SDC). As it was to be a variant of
the International Algebraic Language (eventually renamed ALGOL), it was suggested
that it be called OVIAL (Our Own Version of the International Algebraic Language).
Since OVIAL apparently had “a connotation relative to the birth process that did not
seem acceptable to some people,” the name was soon changed to JOVIAL. It was later
decided that the “J” in JOVIAL would stand for Jules Schwartz, one of the programmers
involved in the project. Hence, “Jules”’ Own Version of the International Algebraic
Language.”

* Ibid.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 137

their superiors. The only thing available to emulate was their mannerisms. The
result was the perpetuation of bad work habits and personal eccentricities - “the
same phenomenon we see in ‘art colonies,” where everyone knows how to look
like an artist, but few, if any, know how to paint like one.”#

Weinberg believed that the use of small, unstructured programming teams
and regular code reviews would alleviate the problem of programmer
“attachment.” Each of the programmers in the group would be responsible for
reading and reviewing all of the application code. Errors that were identified
during the process were simply “facts to be exposed to investigation” with an
eye towards future improvement, rather than personal attacks on an individual
programmer.® By restructuring the social environment of the workplace, and
thereby restructuring the value system of the programmers, the ideal of
“egoless” programming would be achieved. The result would be an academic
style, “peer review” system that would encourage high standards, open
communication, and ongoing professional development. Junior programmers
would be exposed to good examples of programming practice, and more senior

developers could exchange subtle tricks and techniques. A piece of completed

code would not be considered the product of an individual team member but

% Ibid.
® Ibid, 57.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138 From “Black Art” to Industrial Discipline

rather of the team as a whole. The openness of this process would also
encourage the development of proper documentation.

There were a number of other salient features of the “egoless” (or adaptive)
programming team that differed from conventional team-oriented approaches.
The most unusual and significant was that all major design and implementation
decisions were to be determined by consensus, rather than decree. There were
no assigned team leaders, at least not in the conventional sense. Leadership
shifted between team members based on the needs of the moment and the
strength of the individual team members (hence the term “adaptive”). For
example, if a particular phase of the project involved a lot of debugging, one of
the team members especially skilled at debugging might assume the temporary
role of team leader during that period. Even then, all of the important decisions
would be made democratically. Work was assigned based on the strengths — and
preferences — of the individual team members.

The democratic approach to software project management offered a number
of advantages, according to Weinberg. It encouraged communication and
flexibility. Schedule and design changes could be more readily accommodated,
and resources could be allocated efficiently. Secondly, the lack of a formal
hierarchy made the adaptive team significantly more robust than more

structured alternatives. For example, the adaptive team could readily adjust to

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 139

the addition or removal of members. The success of the project would no longer
hinge on the presence of any one particular individual. In an era in which the
performance of programmers was believed to vary dramatically from
programmer to programmer, and when turnover in the software industry
averaged upwards of twenty-five percent annually, this was an appealing
benefit. Last but not least, the social dynamics of the democratically-managed
adaptive team appeared to correspond well with the actual experiences and
expectations of the average working programmer.* Weinberg provided a great
deal of anecdotal evidence suggesting that programmers worked best in
environments in which they participated in all aspects of project development,
from design to implementation to testing. By eliminating the things that caused
programmers to become dissatisfied, turnover could be reduced significantly.
The adaptive team approach to programming, argued Weinberg, was not only
cost-effective and efficient — it kept the programmers happy. And, of course,
happy programmers were productive programmers.

Like the chief programmer team and the hierarchical system of management,
egoless programming constituted a solution to a specific conception of the
burgeoning software crisis. The advocates of the adaptive team approach shared

with many of their contemporaries certain basic assumptions about the nature of

Ogdin, “The Mongolian Horde versus Superprogrammer,” 23.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140 From “Black Art” to Industrial Discipline

programming as a skill and activity: namely, that programming was an
essentially creative undertaking; that individual programmers varied
enormously in terms of style and productivity; and that current programming
practices resembled craft more than they did science. They also believed that,
despite these exceptional characteristics, software development was an activity
that could, to a certain extent, be managed and controlled. What was unusual
about the adaptive team solution was the degree to which is offered computer
programmers a legitimate career path and an attractive professional identity.

In the hierarchical system of management, programmers were generally
regarded as technicians rather than a professionals. The few programmers who
did rise through the hierarchy did so by abandoning their technical interests in
favor of managerial careers. The chief programmer team offered status and
authority only to a small corps of elite “superprogrammers.” All but the most
talented individuals served as much less privileged support personnel. As will
be seen, many programmers were extremely concerned with issues of
professional development, both as they related to themselves as individuals and
to their larger disciplinary community. The journal articles, job advertisements,
and letters to the editor from this period show that many programmers were

worried about becoming “dead-ended” in purely technical positions.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 141

Hierarchical organizations and chief programmer teams did not offer them an
attractive model of professionalization.

The adaptive team approach, in comparison, offered promising career
opportunities to wide range of software workers. The goal of the adaptive team
was to foster a “family” atmosphere in which every member’s contributions
were important. Team members were anything but interchangeable units.
Programmers could cultivate their technical skills and advance their careers
without feeling pressure to transfer into administration. As one knowledgeable
observer suggested, in the adaptive team approach "a good programmer does
not get further and further away from programmers, as occurs in a hierarchical
structure when he moves up the management ladder. Instead, he stays with
programming and gravitates toward what he does best."®

]udgihg from the response it received in the industry literature, 7he
Psychology of Computer Programming appealed to a broad popular audience.®
Weinberg’s anecdotes about the real-life work habits of programmers rang true
to many practitioners. His descriptions of the mischievous pranks that
programmers played on their managers, for example, or of the social significance
of a strategically located Coca Cola dispenser, captured for many of his readers

the essential character of the programming profession. The book has remained

% Richard Canning, “Issues in Programming Management,” EDP Analyzer12, 4 (1974), 6
% J. Hirschfelder, Computing Reviews (1999).

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142 From “Black Art” to Industrial Discipline

in continuous publication since 1969, and was recently celebrated by the industry
journal Datamation as “the best book on computer programming ever written.”*
Weinberg presented a romantic portrayal of software development that
emphasized the quiet professionalism of skilled, dedicated programmer-
craftsmen. Of the many models for “software engineering” that were suggested
in the late 1960s and early 1970s, the “egoless” programmer was by far the most
attractive to the average practitioner.

The popularity of egoless programming extended beyond the community of
practitioners, however. Weinberg’s theories about the efficiency of small
“family” work-groups and “bottom-up” consensus decision-making resonated
with certain popular contemporary management theories. In 1971, Antony Jay’s
Corporation Man provided an ethological analysis of “tribal behavior” in
modern corporations that reinforced Weinberg’s conclusion that six to ten
member teams were a “natural” organizational unit.* Douglas MacGregor’s The
Human Side of Enterprise (1960) discriminated between the Theory X approach
to management, which assumed that because of their innate distaste for
regimented labor, most employees must be controlled and threatened before they
would work hard enough, and the Theory Y belief that the expenditure of

physical and mental effort in work is as natural as play or rest, and that the

% Datamation review cited on www.geraldweinberg.com.
% Antony Jay, Corporation Man (New York: Random House, 1971)

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.geraldweinberg.com

The Mongolian Horde vs. The Superprogrammer 143

average man learns, under proper conditions, not only to accept but to seek
responsibility.* For the supporters of Theory Y management, Weinberg’s
adaptive team represented an exemplary model of the participative problem
solving approach.”

The concept of egoless programming was rarely adopted in fofo, however.
In later descriptions of the chief programming team, Baker and Mills claimed
that their system represented a form of egoless programming, in the sense that
the code produced by the chief programmer was open for inspection by other
members of the surgical team.”* In this case, the adaptive team terminology
seems to have been adopted for public relations purposes only. The whole point
of the chief programming team was to consolidate all aspects of design and
implementation into the hands of a single “superprogrammer.” It would have
been impossible to maintain the level of “architectural integrity” desired by
Brooks if the chief programmer were not heavily invested in his own individual
conceptual structure.

Indeed, by the middle of the 1970s the language of egoless programming

appears to have been almost entirely transformed and co-opted by conventional

¥ Douglas MacGregor, The Human Side of Enterprise (New York, McGraw-Hill, 1960)

% Ogdin, “The Mongolian Horde versus Superprogrammer,” 23.

' F. Terry Baker and Harlan Mills, “Chief Programmer Teams.” In many of the later
management-oriented texts, “egoless” programming meant that programmers should
not be defensive about code-reviews, task assignments, and other management imposed
structures.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144 From “Black Art” to Industrial Discipline

managers. These managers picked up on the idea that requiring programmers to
develop open, non-propriety code allowed for increased administrative
oversight. To them, egoless programming meant that “all programmers were to
adhere to rules that would make their products understandable to others and
make the individual programmer replaceable.”** Weinberg’s original intention
that egoless programming would enable programmers to develop as
autonomous professionals appears to have gone entirely by the wayside. One
management consultant reminded his audience that managers should "stress the
nonpunitive nature of the new approaches. Egoless programming is designed to
help the programmer, not point out his faults..."” The not-so-subtle subtext of
this reminder is that by this period egoless programming had acquired a
reputation for being worker-hostile management jargon.

Although The Psychology of Computer Programmingreceived a great deal
of popular attention for its descriptive verisimilitude, it was less successful in its
prescriptive capacity. Weinberg’s recommendations do not appear to have been
taken seriously by many academic or industry leaders. It may be that his
adaptive teams did not scale well to large development efforts, and were used in

nothing but small local projects. They may have proven inefficient or difficult to

’2 Bo Sanden, “Programming masters break out of the managerial mold,”
Computerworld (June 16, 1986).

* Henry S. Lucas, “On the failure to implement structured programming and other
techniques,” chap. in Proceedings of 1975 ACM Annual Conference (New York:
Association for Computing Machinery, 1975)

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 145

implement, although there is evidence that the use of informal, unstructured
programming teams was standard practice in the industry. Atleast one author
rejected the adaptive team approach because it failed to provide adequate
mechanisms for formal managerial control.* It seems likely that this last
objection was what ultimately proved fatal to Weinberg’s proposal. The
adaptive team approach reinforced the notion that programmers were
independent professionals. It shifted organizational control and authority away
from managers. It ceded valuable occupational territory to a group whose
institutional power-base had not yet been firmly established. Weinberg'’s
adaptive teams were unappealing to everyone but programmers, and
programmers did not have the leverage to push through such an unpopular

agenda.

/[Programmers, Evolution, and the Struggle for Occupational Territory

There are several possible interpretations of the dramatic turn towards
managerial solutions to the software crisis that occurred in the late 1960s. The
conventional wisdom espoused in most software engineering textbooks (and in
the very few historical treatments of this era) is that this sea-change was driven
solely by an economic imperative. In the internal language of the discipline, an

“inversion in the hardware-software cost ratio curve” occurred in the mid-1960s

* McClure, Managing Software Development and Maintenance, 74-75

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146 From “Black Art” to Industrial Discipline

that clearly demanded a managerial response.” Put more simply, the cost of the
actual computers went down at the same time that the cost of using them
(developing and maintaining software) went up. By the middle of the decade
the expenses associated with commercial data processing were dominated by
software maintenance and programmer labor rather than equipment purchases.
And since the management of labor fell under the traditional domain of the
middle-level manager, these managers quickly developed a deep interest in the
art of computer programming. According to this reductionist economic
interpretation, the structure of the technology and the economy completely
determined the course of future developments; the software crisis was (and is) as
inevitable and uncomplicated as that.

An alternative explanation for these developments has been provided by the
labor historians Philip Kraft and Joan Greenbaum. Building on the work of
Harry Braverman and David Noble, Kraft and Greenbaum situate the history of
programming in one of the grand conceptual structures of labor history: the
ongoing struggle between labor and the forces of capital. In Labor and
Monopoly Capital: The Degradation of Work in the Twentieth Century,

Braverman argued that the basic social function of engineers and managers was

% Barry Boehm, “Software and Its Impact: A Quantitative Assessment,” Datamation 19,5
(1973). See also Michael Mahoney, “Software: the self-programming machine,” to
appear in Creating Modern Computing, ed. A. Akera and F. Nebeker, (New York:
Oxford U P, forthcoming).

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 147

to oversee the fragmentation, routinization, and mechanization of labor.

Cloaked in the language of progress and efficiency, the process of routinization
was characterized primarily as a means of disciplining and controlling a
recalcitrant work force. The ultimate result was the deskilling and degradation
of the worker. In his 1977 book Programmers and Managers: The Routinization
of Computer Programming in the United States, Kraft described a similar process

at work in the computer industry:

Programmers, systems analysts, and other software workers are
experiencing efforts to break down, simplify, routinize, and standardize
their own work so that it, too, can be done by machines rather than
people...Elaborate efforts are being made to develop ways of gradually
eliminating programmers, or at least reduce their average skill levels,
required training, experience, and so on...Most of the people that we call
programmers, in short, have been relegated largely to subsidiary and
subordinate roles in the production process... While a few of them sit at
the side of managers, counseling and providing expert’s advice, most
simply carry out what someone else has assigned them.*

Kraft suggested that managers have generally been successful in imposing
structures on programmers that have eliminated their creativity and autonomy.
His analysis was remarkably comprehensive, covering such issues as training
and education, structured programming techniques (“the software manager’s
answer to the conveyor belt”), the social organization of the workplace (aimed at
reinforcing the fragmentation between “head” planning and “hand” labor), and

careers, pay, and professionalism (encouraged by managers as a means of

% Kraft, Programmers and Managers, 26-28.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148 From “Black Art” to Industrial Discipline

discouraging unions). Joan Greenbaum followed Kraft’s conclusions and
methodology closely in her 1979 In the Name of Efficiency: Management Theory
and Shopfloor Practice in Data-Processing Work. More recently, she has
defended their application of the Braverment deskilling hypothesis: “If we strip
away the spin words used today like ‘knowledge” worker, ‘flexible” work, and
‘high tech’ work, and if we insert the word ‘information system’ for ‘machinery,’
we are still talking about management attempts to control and coordinate labor
processes.”

There is validity to both interpretations of the changing attitude of managers
towards programmers that occurred in the late 1960s. Certainly there were
numerous technical innovations in both hardware and software that prompted
managerial responses. It is true that many of the larger software development
projects in this period did run over budget and fall behind schedule. The cost of
software development relative to hardware purchases did continue to climb, and
the labor cost of programming did become a serious burden to many
manufacturers and users. It is also true that some managers were interested, as

Kraft and Greenbaum argue, in creating “software factories” where deskilled

programmers cranked out mass-produced products that required little thought

% Joan Greenbaum, “On twenty-five years with Braverman's 'Labor and Monopoly
Capital.' (Or, how did control and coordination of labor get into the software so
quickly?),” Monthly Review 50, 8 (1999)

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 149

or creativity.”® One 1969 guidebook for managers captured the essence of this

adversarial approach to programmer management:

Can we make a final statement that describes the successful computer
manager? We shall try. He is one whose grasp of the job is reflected in
simple work units that are in the hand of simple programmers; not one
who, with control lost, is held in contempt by clever programmers
dangerously maintaining control on his behalf.”

An uncritical reading of this and other similar management perspectives on
the process of software development, with their confident claims about the value
and efficacy of various performance metrics, development methodologies, and
programming languages, might suggest that Kraft and Greebaum are correct in
their assessments. In fact, many of these methodologies do indeed represent
“elaborate efforts” that “are being made to develop ways of gradually
eliminating programmers, or at least reduce their average skill levels, required
training, experience, and so on.”'® Their authors would be the first to admit it.
A more critical reading of this literature, however, suggests that the claims of

many management theorists represent imagined ideals more than current reality.

% See Douglas Mcllroy on “’Mass produced’ Software Components” in Naur, et al.,
Software Engineering. The Systems Development Corporation referred to their in-house
programming methodology as the “Software Factory.”

* Rothery, Installing and Managing a Computer, 152. Compare this with the famous
statement of Frederick W. Taylor: “Each man must learn how to give up his own
particular way of doing things, adapt his methods to the many new standards and grow
accustomed to receiving and obeying directions covering details, large and small, which
in the past have been left to his individual judgement.” See Taylor, Principles of
Scientific Management, 113.

19 Kraft, Programmers and Managers, 26.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150 From “Black Art” to Industrial Discipline

Writing in 1971, the occupational sociologist Enid Mumford actually lauded data
processing as an “area where the philosophy of job reducers and job simplifiers -
the followers of Taylor - has not been accepted.”'® A quarter century after the
Garmisch conference, a Scientific American reviewer still complained that “The
vast majority of computer code is still handcrafted from raw programming
languages by artisans using techniques they neither measure nor are able to
repeat consistently”'” The widely held perception that, “Excellent developers,
like excellent musicians and artists, are born, not made,” hardly supports the
conclusion that computer programmers were degraded and routinized
laborers.'®

The fact that the software crisis has survived a half-century of supposed
“silver bullet” solutions suggests that Kraft may have overlooked a crucial
component of this history. What is missing from his analysis is the perspective
on the software labor process provided by the many companies who recognized
that computer programming was, at least to a certain extent, a creative and
intellectually demanding occupation, and who, in their management of software

personnel stressed “the importance of a judicious balance between control and

! Enid Mumford, Job Satisfaction: A study of computer specialists (London: Longman
Group Limited, 1972), 175.

%2 W. Gibbs, “Software's Chronic Crisis,” Scientific American, September 1994

1 Bruce Webster, “The Real Software Crisis,” Byte Magazine 21,1 (1996)

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 151

individual freedom.”'™ Kraft implied that most corporations adopted a
hierarchical system of management aimed at eliminating worker autonomy. He
ignored the many alternative methodologies that were proposed and adopted in
this period. Like his mentors Braverman and Noble, he overemphasized the
willingness and ability of the managerial “class,” which he treats as a monolithic
and homogenous category, rather than as the diverse group of individuals
operating in very different social, political, and technical environments, to
impose unilaterally their “routinization” agenda on the programming labor
force. Many programmers were skilled workers who vigorously pursued their
own professional advancement; it is clear that they were active participants in
the struggle to develop the discipline of software engineering.

A more nuanced reading of the contemporary industry literature suggests
that the key to understanding the managerial response to the software crisis has
less to do with economic imperatives or dialectical materialism than with what
the sociologist Andrew Abbott has described as the “jurisdictional struggles”
that occur among groups of professionals struggling for control over a particular
occupational territory. In The Systems of Professions: An Essay on the Division
of Expert Labor, Abbott provides an “ecological” model for understanding

professional change and development. His model can be summarized briefly as

1% Robert Head, “Controlling Programming Costs,” Datamation 13, 7 (1967), 141

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152 From “Black Art” to Industrial Discipline

follows: 1) professions grow when occupational niches become available to them;
they change when their particular territory becomes threatened; 2) the key events
in professional development are struggles over jurisdi;:tions; key environmental
changes involve the creation or abolition of jurisdictions; 3) professional struggle
occurs at three levels: the workplace, culture and public opinion, and legal and
administrative rules. These levels are loosely coupled. Most shifts in jurisdiction
start in the workplace, move to public opinion, and may end up in the legal
sphere. 5) The most consequential struggles are over competence and theory -
the core jurisdiction. Increasing abstractions allows for professional expansion,
but over abstraction can dilute the core jurisdiction. '®

My argument is that this is just one of these jurisdictional struggles occurred
on commercial computing in the late 1960s. The continued persistence of a
“software crisis” mentality among industrial and government managers, as well
as the seemingly unrelenting quest of these managers to develop a software
development methodology that would finally eliminate corporate dependence
on the craft knowledge of individual programmers, can best be understood in
light of a struggle over workplace authority that took shape in the early decades

of computing. In the 1950s and 1960s the electronic digital computer was

1% Andrew Abbott, The Systems of Professions: An Essay on the Division of Expert
Labor (Chicago: University of Chicago Press, 1988). My summary of Abbott borrows
heavily from Paul DiMaggio's review in the American Journal of Sociology 95, 2. (Sep.,
1989), 534-535.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 153

introduced into the well-established technical and social systems of the modern
business organization. As this technology became an increasingly important tool
for corporate control and communication, existing networks of power and
authority were uncomfortably disrupted. The conflicting needs and agendas of
users, manufacturers, managers, and programmers all became wrapped up in
highly public struggle for control over the occupational territory opened up by

the technology of computing.

A New Theocracy or industrial Carpetbaggers?

Prior to the invention of the electronic digital computer, information
processing in the corporation had largely been handled by conventional clerical
staffs and traditional office managers. There had been attempts by aspiring
“systems managers” to leverage expertise in the technical and bureaucratic
aspects of administration into a broader claim to authority over the design of
elaborate custom information processing systems. '* In certain cases, strong-
willed executives were able to use information technology to consolidate control

over lower-levels of the organizational hierarchy. For the most part, however, the

1% Tom Haigh, “From Office Manager to Chief Information Officer: Managing
Information Processing in American Corporations, 1917-1990.” Dissertation, University
of Pennsylvania.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154 From “Black Art” to Industrial Discipline

use of such technologies did not contribute to the rise of a class of technical
professionals capable of challenging the power of traditional management.'”

As more and more corporations began to integrate electronic computers into
their data processing operations, however, it became increasingly clear that this
new technology threatened the stability of the established managerial hierarchy.
Early commercial computers were large, expensive, and complex technologies
that required a high-level of technical competence to operate effectively. Many
non-technical managers who had adapted readily to other innovations in office
technology such as complicated filing systems and tabulating machinery, were
intimidated by computers — and by computer specialists. The high-tech appeal
of electronic computing appealed to upper management, but few executives had
any idea how to integrate this novel technology effectively into their existing
social, political, and technological networks. Many of them granted their
computer specialists an unprecedented degree of independence and authority.

The rising power of EDP professionals did not go unnoticed by other
middle-level managers. In a 1967 essay on “The Impact of Information
Technology on Organizational Control,” management consultant Thomas
Whisler warned his colleagues “it seems most unlikely that one can continue to

hold title to the computer without assuming and using the effective power it

7 JoAnne Yates, Control Through Communication: The Rise of System in American
Management (Baltimore: Johns Hopkins University Press, 1989).

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 155

confers.”'® A decade earlier, Whisler and his colleague Harold Leavitt had
coined the term “information technology,” and had predicted that within thirty
years the combination of management science and information technology
would decimate the ranks of middle management and lead to the centralization
of managerial control.'” His 1967 article suggested that EDP specialists were the
direct beneficiaries of such centralization, which occurred at the expense of
traditional managers. He quoted one insurance executive who claimed that
“There has actually been a lateral shift to the EDP manager of decision-making
from other department managers whose departments have been computerized.'”

Another manager complained about the relative decline of managerial

competence in relationship to computer expertise:

The supervisor...has been replaced as the person with superior technical
knowledge to whom the subordinates can turn for help. This aspect of
supervision has been transferred, at least temporarily, to the EDP manager
and programmers or systems designers involved with the
programming...underneath, the forward planning function of almost all
department managers has transferred to the EDP manager."’

Information technology, argued Whisler, “tends to shift and scramble the

power structure of organizations... The decision to locate computer

1% Thomas Whisler, “The Impact of Information Technology on Organizational Control,”
in The Impact of Computers on Management, Charles Myers (Ed.) (Cambridge, MA:
MIT Press, 1967), 44.

1% Harold Leavitt and Thomas Whisler, “Management in the 1980's,” Harvard
Management Review 36, 6 (1958).

119 Whisler, “The Impact of Information Technology on Organizational Control.”

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156 From “Black Art” to Industrial Discipline

responsibility in a specific part of an organization has strong implications for the
relative authority and control that segment will subsequently achieve.”'"!

Whisler was hardly alone in his assessment of the impending danger of an
organizational power shift. In her 1971 book, How Computers Affect
Management, Rosemary Stewart described how computer specialists mobilized
the mystery of their technology to “impinge directly on a manager's job and be a
threat to his security or status.” ''* In his 1969 Computer Can’t Solve Everything,
Thomas Alexander emphasized the cultural differences that existed between
“computer people” and business managers: “Managers... are typically older and
tend to regard computer people either as mere technicians or as threats to their
position and status - in either case they resist their presence in the halls of
power.” ' Authors Porat and Vaughan listed several deprecating titles that
managers used to describe their upstart rivals, including "the new theocracy,”
"prima donnas," "the new breed,” "industrial carpetbaggers" and “other similarly
unflattering titles.” '

It is not difficult to understand why many managers came to fear and dislike

computer programmers and other software specialists. In addition to the usual

1 Ibid.

112 Rosemary Stewart, How Computers Affect Management (Cambridge, MA: MIT Press,
1971), 196.

113 T. Alexander, “Computers Can't Solve Everything,” Forfune (October, 1969), 169.

14 Avner Porat and James Vaughan, “Computer Personnel: The New Theocracy - or
Industrial Carpetbaggers,” Personnel Journal 48, 6 (1968), 540-543.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 157

suspicion with which established professionals generally regarded unsolicited
changes in the status quo, managers had particular reasons to resent EDP
departments. The unprecedented degree of autonomy that corporate executives
granted to “computer people” seemed a deliberate affront to the local authority
of departmental managers. “All too often management adopts an attitude of
blind faith (or at least hope) toward decisions of programmers,” complained one
management-oriented computer “textbook.” As a result of the “inability or
unwillingness of top management to clearly define the objectives of the computer
department and how it will be utilized to the benefit of the rest of the
organization,” many operational managers “expect the worse and, therefore,
begin to react defensively to the possibility of change.”"** The adoption of
computer technology threatened to bring about a revolution in organizational
structure that carried with it tangible implications for the authority of managers:
“What has not been predicted, to any large degree, is the extent to which political
power would be obtained by this EDP group. Top management...have
abdicated their responsibility and let the ‘computer boys' take over.” '

There were other reasons why traditional managers felt threatened by

computers and computer specialists. The continuous gap between the demand

115 1hid, 542.
116 Golda, “The Effects of Computer Technology on the Traditional Role of
Management,” 34.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158 From “Black Art” to Industrial Discipline

and supply of qualified computer personnel had in recent years pushed up their
salary level faster than those of other professionals and managers. It also
provided them with considerable opportunities for horizontal mobility, either in
pursuit of higher salaries or more challenging positions. These opportunities
were often resented by other, less mobile employees. In the eyes of many non-
technical managers, the personnel more closely identified with the digital
computer “have been the most arrogant in their willful disregard of the nature of
the manager's job. These technicians have clothed themselves in the garb of the
arcane wherever they could do so, thus alienating those whom they would
serve.”"” Deserved or otherwise, computer programmers developed a reputation

for being flighty, disloyal, and arrogant.

The “Cosa Nostra” of Data Processing
There is no doubt that by the end of the decade traditional corporate
managers were extremely aware of the potential threat to their occupational
territory posed by the rise of computer professionals. As Michael Rose described

it in his 1969 book Computers, Managers, and Society,

[Local departmental managers] obviously tend to resist the change. Fora
start, it threatens to transform the concern as they know and like it...At the
same time the local's unfamiliarity with and suspicion of theoretical
notions leave him ill-equipped to appreciate the rationale and benefits of

7 Datamation Editorial, “The Thoughtless Information Technologist,” Datamation 12, 8
(1966).

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 159

computerization. It all sounds like dangerously far-fetched nonsense
divorced from the working world as he understands it. He is hardly likely
to hit it off with the computer experts who arrive to procure the
organizational transformation. Genuine skepticism of the relevance of the
machine, reinforced by emotional factors, will drive him towards non-
cooperation.''®

In response to this perceived challenge to their authority, managers
developed a number of inter-related responses intended to restore them to their
proper role in the organizational hierarchy. The first was to define programming
as an activity, and by definition programmers as professionals, in such a way as
to assign it and them a subordinate role as mere technicians or service staff
workers. [have already described some of the ways in which the rhetoric of
management literature reinforced the notion that computer specialists were self-
interested, narrow technicians rather than future-minded, bottom-line-oriented
good corporate citizens. “People close to the machine can also lose perspective,”
argued one computer programming “textbook” for managers. “Some of the most
enthusiastic have an unfortunate knack of behaving as if the computer were a
toy. The term ‘addictive’ comes to mind...” ' Managers emphasized the
youthfulness and inexperience of most programmers. The results of early
aptitude tests and personality profiles - those that emphasized their “dislike for

people” and “preference for...risky activities” — were widely cited as examples of

18 Michael Rose, Computers, Managers, and Society (Harmondsworth: Penguin, 1969),
207.

¥ Michael Barnett, Computer Programming in English (New York: Harcourt, Brace &
World, 1969), 5.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160 From “Black Art” to Industrial Discipline

the “immaturity” of the computer professions. In fact, one of the earliest and
most widely cited psychological profiles of programmers suggested that there
was a negative correlation between programming ability and interpersonal skills.
120 The perception that computer programmers were particularly anti-social,
that they “preferred to work with things rather than people,” reinforced the
notion that programming was an inherently solitary activity, ill suited to
traditional forms of corporate organization ana management.

Another common strategy for deprecating computer professionals was to
challenge their technical monopoly directly. If working with computers was in
fact not all that difficult, then dedicated programming staffs were superfluous.
One of the alleged advantages of the COBOL programming language frequently
touted in the literature was its ability to be read, understood — and perhaps even
written ~ by informed managers. '* The combination of new programming
technology and stricter administrative controls promised to eliminate
management’s dangerous dependency on individual programmers: “The
problems of finding personnel at a reasonable price, and the problem of control,
are both solved by good standards. If you have a set of well-defined standards

you do not need clever programmers, nor must you find yourself depending on

% Dallis Perry and William Cannon, “Vocational Interests of Computer Programmers,”
Journal of Applied Psychology 51, 1 (1967).

12 Robert Gordon - “Personnel Selection” in Fred Gruenberger and Stanley Naftaly,
eds., Data Processing.Practically Speaking (Los Angeles: Data Processing Digest, 1967),
85.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 161

them.”'? At the very least, managers could learn enough about computers to
avoid being duped by the “garb of the arcane” in which many programmers
frequently clothed themselves.'® At West Point, cadets were taught enough
about computers to prevent them from “being at the mercy of computers and
computer specialists...we want them to be confident that they can properly
control and supervise these potent new tools and evaluate the significance of
results produced by them.”

The idea that the so-called “software crisis” could largely be attributed to
mismanagement by technicians served a dual-purpose for traditional middle-
level managers. First of all, it placed them solidly in the role of corporate
champion. Many of the most prominent software engineering methodologies
developed in the immediate post-Garmisch conference era were management-
related or —driven. Secondly, this particular construction of the software crisis
provided an unflattering image of the computer specialists vis-a-vis
management. By representing programmers as short-sighted, self-serving
technicians, managers reinforced the notion that they were ill-equipped to
handle “big picture,” mission-critical responsibilities. After all, according to the

McKinsey reports, “Only managers can manage the computer in the best

12 Rothery, Installing and Managing a Computer, 83.

12 Datamation Editorial, “The Thoughtless Information Technologist,” Datamation12, 8
(1966), 21-22.

2 Ibid.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162 From “Black Art” to Industrial Discipline

interests of the business.””” And not just any managers would do: only those
managers who had traditional business training and experience were acceptable,
since “managers promoted from the programming and analysis ranks are
singularly ill-adapted for management.”'*

Experienced managers stressed the critical differences between “real-world
problems” and “EDP’s version of real-world problem.”'” The assumptions
about programmers embedded in the infamous McKinsey reports — that they
were narrowly-technical, inexperienced, and “poorly qualified to set the course
of corporate computer effort” — resonated with many corporate managers. '*
They provided a convenient explanation for the burgeoning software crisis.
Managers, had in effect, “abdicated their responsibility and let the 'computer
boys' take over.” " The fault was not entirely the manager’s own, however.
Calling electronic data processing "the biggest ripoff that has been perpetrated
on business, industry, and government over the past 20 years," one author
suggested that business executives have been actively prevented “from really

bearing down on this situation by the self-proclaimed cloak of sophistication and

mystique which falsely claims immunity from normal management methods.

' McKinsey & Company, “Unlocking the Computer's Profit Potential,” 33.

126 Ogdin, “The mongolian hordes versus superprogrammer,” 20.

7 Larson, “EDP - A 20 Year Ripoff!”, Infosystems (November 1974), 28.

128 Datamation Editorial, “Trouble ... I Say Trouble, Trouble in DP City,” Datamation 14,
7 (1968)

' Golda, “The Effects of Computer Technology on the Traditional Role of
Management,” 34.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 163

They are still being held at bay by the computer people's major weapon - the
snow job.” '* Computer department staffs, although “they may be superbly
equipped, technically speaking, to respond to management's expectations,” are
“seldom strategically placed (or managerially trained) - to fully assess the
economics of operations or to judge operational feasibility.”"*' Only the
restorations of the proper balance between computer personnel and managers
could save the software projects from a descent into “unprogrammed and
devastating chaos.” **

In much of the management literature of this period, computer specialists
were often cast as self-interested peddlers of “whiz bang” technologies. “In all
too many cases the data processing technician does not really understand the

problems of management and is merely looking for the application of his

specialty.” ' In the words of one Fortune 500 data processing executive:

They [EDP personnel] don't exercise enough initiative in identifying
problems and designing solutions for them...They are impatient with my
lack of knowledge of their tools, techniques, and methodology - their
mystique; and sometimes their impatience settles into arrogance...In sum,
“These technologists just don't seem to understand what I need to make
decisions.”™

1% Harry Larson, “EDP - A 20 Year Ripoff!,” 26.

1 D. Herz, New Power for Management(New York: McGraw-Hill, 1969), 169.

132 Robert Boguslaw and Warren Pelton, “Steps: A Management Game for Programming
Supervisors,” Datamation 5, 6 (1959), 13-16.

138 W.R. Walker, “MIS Mysticism (letter to editor),” Business Automation 16,7 (1969), 8.
'* Datamation Editorial, “The Thoughtless Information Technologist,” Datamation 12, 8
(1966), 21-22.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164 From “Black Art” to Industrial Discipline

The 1969 book New Power for Management emphasized the myopic perspective
of programmers: “For instance, a technician's dream may be a sophisticated
computerized accounting system; but in practice such a system may well make
no major contribution to profit.” ** Others attributed to them even more
Machiavellian motives: “More often than not the systems designer approaches
the user with a predisposition to utilize the latest equipment or software
technology - for his resume - rather than the real benefit for the user.”** Calling
programmers the “Cosa Nostra” of the industry, the colorful former-
programmer turned technology management consultant H.R.]. Grosch warned
managers to “refuse to embark on grandiose or unworthy schemes, and refuse to
let their recalcitrant charges waste skill, time and money on the fashionable
idiocies of our racket.” '¥” Like many of his management-oriented colleagues, he
argued that programmers needed to “accept reality, not to rebel against it.”
Many of the technological, managerial, and economic woes of the software
industry became wrapped up in the problem of programmer management.

It is possible to overemphasize the degree to which traditional managers
were hostile to programmers and other software specialists. Kraft and

Greenbaum go too far in their portrayal of computer programmers as an

1% Herz, New Power for Management, 169.

136 H.L. Morgan and J.V. Soden, “Understanding MIS Failures,” Data Base (Winter 1973),
159.

¥” Herb Grosch, “Programmers: The Industry's Cosa Nostra,” Datamation 12, 10 (1966),
202.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Mongolian Horde vs. The Superprogrammer 165

oppressed and degraded labor force. Many data processing managers sincerely
believed that the best way to “rationalize” software develop was to implement
strict managerial controls on programming practices. A number of them had
technical backgrounds and identified themselves more as programmers than as
managers. Most of them would never characterize their relationship with
software developers as openly and deliberately antagonistic. Nevertheless, it is
clear that the introduction of computer technology into the corporate
environment caused a realignment of established networks of power and
authority. During this period of realignment many programmers actively
pursued a professional agenda aimed at providing themselves with as much

occupational territory as possible.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Three: The Professionalization of Programming

In one inquiry it was found that a successful team of computer specialists included an
ex-farmer, a former tabulating machine operator, an ex-key punch operator, a girl who
had done secretarial work, a musician and a graduate in mathematics. The last was
considered the least competent.

H.A. Rhee, Office Automation in Social Perspective (1968)

In the development of professional standards, the computer field must be unrelenting in
advocating stringent requirements for professional status, whether these include
education, experience, examination, character tests, or what not ...2

“The Making of a Profession,” Communications of the ACM (1961)

L The Humble Programmer

The first computer programmers came from a wide variety of occupational
and educational backgrounds. Some were former clerical workers or tabulating
machine operators. Others were recruited from the ranks of the female “human
computers” who had participated in wartime manual computation projects.
Most, however, were erstwhile engineers and scientists recruited from military
and scientific hardware development projects. For these well-educated
computer “converts,” it was not always clear where computer programming
stood in relation to more traditional disciplines. In the early 1950s, the academic

discipline that we know today as computer science existed only as a loose

' H.A. Rhee, Office Automation in Social Perspective: The Progress and Social
Implications of Electronic Data Processing (Oxford: Basil Blackwell, 1968), 118.

2 C.M. Sidlo, “The Making of a Profession (letter to editor),” Communications of the
ACM4, 8 (1961), 366.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 167

association of institutions, individuals, and techniques. Although computers
were increasingly used in this period as insfruments of scientific production,
their status as legitimate objects of scientific and professional scrutiny had not
yet been established. Those scientists who left “respectable” disciplines for the
uncharted waters of computer science faced self-doubt, professional uncertainty,
and even ridicule. The physicist-turned-programmer Edsgar Dijkstra recalled
this difficult transformation in his 1972 Turing Award Lecture (revealingly

entitled, “The Humble Programmer”):

...I had to make up my mind, either to stop programming and become a
real, respectable theoretical physicist, or to carry my study of physics to
formal completion only, with a minimum of effort, and to become...what?
A programmer? But was that a respectable profession? After all what
was programming? Where was the sound body of knowledge that could
support it as an intellectually respectable discipline? I remember quite
vividly how I envied my hardware colleagues, who, when asked about
their professional competence, could at least point out that they knew
everything about vacuum tubes, amplifiers and the rest, whereas I felt
that, when faced with that question, I would stand empty-handed.’

Although many business programmers in this period did not share Dijkstra’s

scientific and mathematical aspirations, most would have agreed with his

* Edsger Dijkstra, “The Humble Programmer,” in ACM Turing Award Lectures: The
First Twenty Years, 1966-1955 (New York: ACM Press, 1987). When Dijsktra applied for
a marriage license in his native Holland, some years later, he was rejected on the
grounds that he had listed his occupation as ‘programmer,” which was not a recognized,
legitimate profession. Dijkstra swallowed his pride, as he tells the story, and
resubmitted his application with his ‘second choice’ -- theoretical physicist. Dijkstra
would later become one of the strongest advocates for theoretical rigor and the use of
engineering principles in computer science. His program of “structured programming”
played a central role in debates over the so-called software crisis of the late 1960s.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168 From “Black Art” to Industrial Discipline

assessment of the ambiguous status of the programming profession. Computer
specialists had been working since the late 1950s to establish a unique intellectual
and occupational identity. They did achieve some limited success: indeed, as
the historian William Aspray has suggested, it is remarkable how rapidly
computing acquired the frappings of professionalization in the United States:
research laboratories and institutes, professional conferences, professional
societies, and technical journals.* Many of the structural elements of a
computing profession were in place by the end of the 1950s. But the existence of
professional institutions did not necessarily translate readily into widely
recognized professional status. Academic computer scientists struggled to
establish a legitimate — and independent - intellectual discipline based on a
sound body of theoretical research. Systems analysts and business programmers
worked to improve their standing within the organizational hierarchy by
distancing themselves from computer operators and other “mere technicians.”
Neither group was entirely successful. As one commentator suggested in a 1975
review of the computer professions, “true professional status for systems

analysts and /or programmers...seems no closer today than it was ten years ago.

* William Aspray, The History of Computer Professionalization in America,”
(unpublished manuscript). Emphasis mine.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 169

It is not clear just what body of practitioners should rightly classify as
professionals.”®

In many respects, the question of professionalism lies at the very heart of the
historical construction of the software crisis. Much of the rhetoric of the crisis
focused on the problem of programming labor, and on the training, recruitment,
and management of programmers. Many of the themes developed in previous
chapters — the development of new programming technologies, or of more
“efficient” management methodologies - are closely tied to questions of
professional status. If skilled programmers could be replaced by automated
development tools, for example, or by more “scientific” management
methodologies, then they could hardly have much claim to professional
legitimacy. The question of what programming was - as an intellectual and
occupational activity - and where it fit into traditional social, academic and
professional hierarchies, was actively negotiated during the decades of the 1950s
and 1960s. Programmers were well aware of their tenuous professional
position, and they struggled to prove that they possessed a unique set of skills
and training that allowed them to lay claim to professional autonomy.

This chapter will focus on the attempts of programmers to establish the

institutional structures associated with professionalism: university curricula;

® Richard Canning, “Professionalism: Coming or Not?,” EDP Analyzer14, 3 (1975), 7-8.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170 From “Black Art” to Industrial Discipline

recognized performance and safety standards; certification programs;
professional associations; and codes of ethics. I argue that the
professionalization of computer programming represented a potential solution to
the software crisis that appealed to programmers and employers alike. The
controversy that surrounded the various professional institutions that were
established in this period, however, reveals the deep divisions that existed within
the programming community about the nature of programming skill and the

future of the programming professions.

il. The Drive Towards Professionalism

It is not difficult to understand why programmers in the 1950s and 1960s
were so concerned with the process of professionalization. This was a period in
which many white-collar occupations were attempting to achieve professional
legitimacy. As sociologist Herbert Wilensky wrote in 1964, professionalism
offered increased social status, greater autonomy, improved opportunities for
advancement, and better pay.® Belonging to a profession provided an individual
with a “monopoly of competence,” the control over a valuable skill that was
readily transferable from organization to organization.” Professionalism

provided a means of excluding undesirables and competitors; it assured basic

¢ Harold Wilensky, “The Professionalization of Everyone?,” American Journal of
Sociology 70, 2 (1964).

7 Magali Sarfatti Larson, The Rise of Professionalism: A Sociological Analysis (Berkeley:
University of California Press, 1977).

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 171

standards of quality and reliability; it provided a certain degree of protection
from the fluctuations of the labor market; and it was seen by many workers as a
means of advancement into the middle class.® Programmers in particular saw
professionalism as means of distinguishing themselves from “coders” or other
“mere technicians.”

The professionalization efforts of programmers were often encouraged by
their corporate employers. Managers resisted the incursion of computer
programmers and systems analysts into their traditional occupational territory
by dismissing them as narrow technicians and self-serving careerists. As part of
their rhetorical construction of the software crisis as a problem of programmer
management, corporate managers often accused programmers of lacking
professional standards and loyalties: “too frequently these people
[programmers], while exhibiting excellent technical skills, are non-professional in
every other aspect of their work.”” Professionalism, or at least a certain form of
corporate-friendly professionalism, was represented by managers as a means of
reducing corporate dependence on the whims of individual programmers.' It

was also thought that professionalism might solve a number of other pressing

® Robert Zussman, Mechanics of the Middle Class: Work and Politics Among American
Engineers (Berkeley: University of California Press, 1985).

® Malcolm Gotterer, “The Impact of Professionalization Efforts on the Computer
Manager,” chap. in Proceedings of 1971 ACM Annual Conference (New York:
Association for Computing Machinery, 1971), 368.

Y David Ross, “Certification and Accreditation,” Datamation 14, 9 (1968), 183, 186

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172 From “Black Art” to Industrial Discipline

management problems: it might motivate staff members to improve their
capabilities; it could bring about more commonality of approaches; it could be
used for hiring, promotions and raises, and it could help solve the perennial
question of “who is qualified.”"

The professionalization of programming was attractive to potential
employers, however, only if it encouraged good corporate citizenship. Because
skilled programmers were the possessors of a “'personal monopoly’' which
manifests itself in the market place,” increased professionalization might only
exacerbate existing labor market shortages.”? “Professionalism might well
increase staff mobility and hence turnover,” warned one contemporary observer,
“and it probably would lead to higher salaries for the 'professionals.""
Programmers who were more loyal to their profession than to their employer, it
was suggested, would use their so-called “professional prerogatives” to
perpetuate an already dangerous degree of personal and professional
autonomy."

Despite these misgivings, corporate managers generally embraced the

concept of professionalism. It appeared to provide a familiar solution to the

increasingly complex problems of programmer management: “The concept of

! Canning, “Professionalism: Coming or Not?,” 2.

12 Roger Guarino, “Managing Data Processing Professionals,” Personnel Journal (Dec.,
1969), 972.

B Canning, , “Professionalism: Coming or Not?,” 2.

" Harry Larson, “EDP - A 20 Year Ripoff!,” Infosystems (November 1974), 28-29.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 173

professionalism,” argued one personnel research journal from the early 1970s,
“affords a business-like answer to the existing and future computer skills
market...The professional’s rewards are full utilization of his talents, the
continuing challenge and stimulus of new EDP situations, and an invaluable
broadening of his experience base.””” The rhetoric of professionalism was
ideologically neutral, and appealed to a wide variety of individuals and interest
groups.

In response to these various motivations to professionalize, programmers in
the late 1950s and early 1960s worked to establish the institutional structures
traditionally associated with the professions. These included the development of
an academic infrastructure for supporting theoretical computer science research;
support for industry-based certification and licensing programs; the
establishment of professional societies and journals; the introduction of
performance standards; and professional codes of ethics. Many of these
institutional structures developed quite rapidly and were established on a
provisional basis by the end of the 1950s.

The early adoption of the structures of professionalism conceals, however,
the deep intellectual and ideological schisms that existed within the

programming community. Although many practitioners agreed on the need for

'* Personnel Journal Editorial, “Professionalism Termed Key to Computer Personnel
Situation,” Personnel Journal 51, 2 (February, 1971), 156-157.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174 From “Black Art” to Industrial Discipline

a programming profession, they disagreed sharply about what such a profession
should look like. What was the purpose of the profession? Who should be
allowed to participate? Who would control entry into the profession, and how?
What body of abstract knowledge would be used to support its claims to
legitimacy? By the beginning of the 1960s, clearly discernible factions had
emerged within the nascent programming discipline. Science- and engineering-
oriented programmers worked to develop a theoretical basis for their discipline.
They joined associations like the Association for Computing Machinery (ACM)
that published academic-style journals, imposed strict educational requirements
for membership, and resisted certification and licensing programs. Business data
processing personnel, on the other hand, pursued a more practice-centered
professional agenda. If they joined any professional associations at all, it was the
Data Processing Management Association (DPMA). They read journals like
Datamation, which emphasized plain speech and practical relevance over
theoretical rigor. The tension that existed between these two groups of aspiring
professionals — the academic computer scientists and the business data
processors — greatly influenced the character and fortunes of the various

professional institutions that each faction supported.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 175

1. Computer science as the key to professionalism

In September 1959, an article in the newly-founded Association for
Computing Machinery (ACM) journal Communications of the ACM introduced
to the world the outlines of a new intellectual and academic discipline: computer
science. By this time there were numerous computer-related studies under way
in a wide variety of academic departments at various research universities,
including departments of mathematics, business and economics, library science,
physics, and electrical engineering. In “The Role of the University in Computers,
Data Processing, and Related Fields,” Louis Fein argued that all of these activities
should be consolidated into a single organizational entity. After submitting a
range of possible names for this entity, including “information sciences,”
“intellitronics,” and “synnoetics” (a term that Fein himself used on several
occasions), he proposed the term “Computer Science.” '* Other names for this
new discipline (or its practitioners) had been suggested elsewhere in the
contemporary literature: “Comptology,” “Hypology,” derived from the Greek
root hypologi (meaning “to compute”), “Applied Epistemologist,” and

“Turingineer,” among others. Computer science was the name that stuck.”

!¢ Louis Fein, “The Role of the University in Computers, Data Processing, and Related
Fields,” Communications of the ACM?2, 10 (1959), 7-14.

7 Quentin Correll, “Letters to the Editor,” Communications of the ACM 1,7 (1958), 2;
P.A. Zaphyr, “The science of hypology (letter to editor),” Communications of the ACM
2,1 (1959), 4; Editors of DATA-LINK, “What's in a Name? (letter to editor),”
Communications of the ACM1, 4 (1958), 6. A more complete treatment of this history

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176 From “Black Art” to Industrial Discipline

Establishing computer science as a legitimate theoretical discipline was
clearly an essential component in the professionalization agenda of its
practitioners. Within the status hierarchy of the university, theory ranked
higher than practice, and was therefore desirable for its own sake. Outside of the
academy, theoretical knowledge offered a potential key to professional
advancement. It provided a means of distinguishing the competent professional
from the mere technician. As the sociologist Andrew Abbot and others have
suggested, the key to professional development is control over abstract
knowledge: “Practical skill grows out of an abstract system of knowledge, and
control of the occupation lies in control of the abstractions that generate the
practical techniques ... Abstraction enables survival in the competitive system of
professions.”™® Aspiring computer professionals recognized the need to establish
a more abstract and “scientific” approach to their discipine. In a 1961 letter to the
editors of the Communications of the ACM on “The Making of a Profession,”
C.M. Sidlo suggested that “As a profession becomes mature it realizes that the
science (not technology) needed by the profession must continually be extended
to more basic content rather than restricted only to the obvious applied science.

A profession is under an obligation to develop and base itself on a body of

can be found in Paul Ceruzzi, “Electronics Technology and Computer Science, 1940-
1975: A Coevolution,” Annals of the History of Computing 10, 4 (1989), 257-275.

¥ Andrew Abbott, The Systems of Professions: An Essay on the Division of Expert Labor
(Chicago: University of Chicago Press, 1988).

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 177

knowledge rather than upon a body of applications.”” The primary distinction
between professionals and technicians, argued another practitioner, “is based on
whether one has undergone a 'prolonged course of specialized, intellectual
instruction and study.' This distinction has not yet materialized in the computer
programming occupation because of the diverse backgrounds, lack of
competence criteria and embryonic stages of applied computer science
education.”? By the end of the 1960s, formal education was seen by an
increasing number of data processing personnel as a necessary prerequisite to
professional status. As the software crisis heated up in the late 1960s, university
computer science programs served as a resource for practitioners in their
struggle for professional legitimacy. They also served as a battleground in which
various groups competed for control over occupational territory.

The lack of formal theories of software development offered a convenient
explanation for the burgeoning software crisis. A 1968 Datamation editorial on
“The Facts of Life” described the inadequacies of contemporary practices: “Our
youthfulness means, for one thing, that we still lack a sound theoretical base for
our work. Which means it's hard to transfer learning from one particular

experience to another. Which means in turn that it's extremely difficult to select,

¥ Sidlo, “The Making of a Profession,” 367.

% Malcolm Gotterer, “The Impact of Professionalization Efforts on the Computer
Manager,” chap. in Proceedings of 1971 ACM Annual Conference (New York:
Association for Computing Machinery, 1971), 371-372.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178 From “Black Art” to Industrial Discipline

train, and develop good edp systems people, programmers and analysts
especially.”® The phrase “software engineering” provided the organizing
principle of the 1968 Garmisch Conference and was “deliberately chosen as being
provocative, in implying a need for software manufacturing to be based on the
types of theoretical foundations and practical disciplines that are traditional in
the established branches of engineering.”? The subsequent adoption of the
“software engineering” agenda by a broad spectrum of the computing
community indicates the powerful appeal that a more “scientific” approach to
software development held for many practitioners, managers, and

manufacturers.

“A momentary aberration in the fields of mathematics and electrical engineering...”
Although the term “computer science” was not adopted until 1959, the
origins of the discipline that it encompasses stretch back at least into the late
1940s. In fact, much of the mathematical theory that underpins computer science
derives from work done as early as 1854.” Charles Babbage had provided a
sophisticated description of the principles of digital computing in the 1830s.

Alan Turing published his now-famous article on the computability of numbers

2 Datamation Editorial, “The Facts of Life,” Datamation 14, 3 (1968)

2 Peter Naur, Brian Randall, and J.N. Buxton, ed., Soffware engineering Proceedings of
the NATO conferences (New York: Petrocelli/Carter, 1976), 7.

B William Aspray, “The History of Computer Professionalism in America,”
(unpublished manuscript).

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 179

in 1937. George Stibitz of Bell Laboratories, Konrad Zuse at the Henschel
Aircraft Company in Berlin, and Howard Aiken had all built working electro-
mechanical digital computers by the mid-1930s. It was not until the immediate
post-war period, however, that a community of researchers dedicated to the
study of computer technology began to emerge.

By the end of the 1940s, five major research universities in the United States
had experience with high-speed computing: Columbia, Harvard, University of
Pennsylvania, MIT, and Princeton. Columbia had been working with the [BM
Corporation since the late 1920s on projects related to scientific computing. In
1945 the university established the Watson Scientific Computing Laboratory on
its campus. Howard Aiken of Harvard University used IBM and U.S. Navy
resources to build his Mark I electro-mechanical computer, first installed at
Harvard in 1944. The University of Pennsylvania collaborated with the Ballistics
Research Laboratory of the Aberdeen Proving Grounds to develop the ENIAC
machine. MIT was involved with several large computation projects in the
1940s, most famously the Project Whirlwind real-time flight simulator. Princeton
University inherited a stored-program computer designed by the mathematician
John von Neumann for the nearby Institute for Advanced Study.

Although each of these projects was developed for very different purposes in

very different institutional contexts, they were united by their focus on

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180 From “Black Art” to Industrial Discipline

hardware. Theoretical questions took a back seat to pressing technical concerns;
just getting these early machines to run without failure for more than a few
minutes was an engineering challenge of heroic proportions. As one of the first
general textbooks on electronic computing described it, “The outstanding
problems involved in making machines are almost all technological rather than
mathematical.”* When the Moore School of Electrical Engineering at the
University of Pennsylvania held its famous lecture series on the “Theory and
Techniques for Design of Electronic Digital Computers” in 1947, the emphasis
was much more on techniques than on theory.

By the beginning of the 1950s, a community of researchers had begun to form
around the design and use of computers. The 1947 Moore School lectures had
served as a seedbed for the nascent computing community. Many of the
attendees would be leaders in the field for the next several decades.” Similar
one-time conferences were held at Harvard in 1947 and 1949, at IBM in 1948, at
Cambridge University in 1940, and Manchester University in 1951. Although
most of these conferences focused on hardware development and engineering
concerns, by the end of the 1940s there were indications that the discipline was

becoming much more theoretically oriented. In 1945-46 John von Neumann

B.V. Bowden, Faster than Thought: A Symposium on Digital Computing Machines
(London: Sir Isacc Pitman & Sons, 1953).

® Martin Campbell-Kelly and Michael Williams, eds., The Moore School Lectures:
Theory and Techniques for the Design of Electronic Digital Computers (Cambridge, MA:
MIT Press: Charles Babbage Reprint Series, 1985).

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 181

circulated an informal “First Draft of a Report on the EDVAC.” The EDVAC was
the planned successor to the ENIAC computer then being developed at the
University of Pennsylvania. Von Neumann had become involved with the
project in 1945 as an outgrowth of his work on nuclear physics at Los Alamos.
His report described the EDVAC in terms of its logical structure, using notation
borrowed from neurophysiology. Ignoring most of the physical details of the
EDVAC design, such as its vacuum tube circuitry, von Neumann focused instead
on the main functional units of the computer: its arithmetic unit, its memory,
input and output. By abstracting the logical design of the digital computer from
any particular physical implementation, von Neumann took a crucial first step in
the development of a modern theory of computation.®® The outlines of a new
discipline had begun to take shape.

Over the course of the next decade, organizational and administrative
boundaries were drawn around computer science research. As early as 1947
courses in digital computing were being taught at MIT and Columbia. That
same year Harvard offered a one-year master’s degree program in applied
mathematics “with special reference to computing machinery.”” In 1948 this

program was expanded to include Ph.D. students. In the 1950s an increasing

% Michael S. Mahoney, “Computer Science: The Search for a Mathematical Theory”, in
John Krige and Dominique Pestre (eds.), Science in the 20th Century (Amsterdam:
Harwood Academic Publishers, 1997).

¥ 1. Bernard Cohen, Howard Aiken: Portrait of a Computer Pioneer (Cambridge, MA:
The MIT Press, 1999), 186.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182 From “Black Art” to Industrial Discipline

number of universities began offering courses and degree programs in computer-
related specialties. Most of these degrees were actually received from
mathematics or electrical engineering departments; the first doctorate in
“computer science” was not awarded until 1965.% By the 1964-65 academic year,
however, there were approximately 4,300 undergraduates and 1,300 graduate
students in computer science, data processing, information sciences and related
programs. In 1966-67, these totals jumped to over 22,000 undergraduates and
5,000 graduates, roughly a five-fold increase.”” By the end of the 1960s,
computer science was well on its way towards becoming an independent
departmental entity in many major research universities.

This move towards institutional independence and academic respectability
was closely associated with, and predicated upon, the development of computer
science theory. In his 1959 manifesto announcing the new discipline, Louis Fein

had been careful to distance it from its hardware-oriented origins:

Too much emphasis has been placed on the computer equipment in
university programs that include fields in the “computer sciences” ...
Indeed an excellent integrated program in some selected fields of the
computer sciences should be possible without any computing equipment
at all, just as a first rate program in certain areas of physics can exist
without a cyclotron.*

* William Aspray, “Was Early Entry a Competitive Advantage?,” Annals of the History
of Computing (2000), 64.

¥ Thomas White, “The 70's: People,” Datamation 16,7 (1973), 42.

% White, “The 70's: People,” 11.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 183

A 1964 report from the ACM Curriculum Committee on Computer Science
echoed this notion that computer science involved more than just the design and

operation of computing equipment:

There are widespread misconceptions of the purpose of computer science
despite the general acknowledgement that it is a distinctive subject.
Computer science is not simply concerned with the design of computing
devices - nor is it just the art of numerical calculation, as important as
these topics are ... Computer science is concerned with information in
much the same sense that physics is concerned with energy; it is devoted
to the representation, storage, manipulation, and presentation of
information in an environment permitting automatic information systems.
As physics uses energy transforming devices, computer science uses
information transforming devices.*

In a 1967 letter to the editors of Science, Herbert Simon, Allen Newell and
Alan Perlis attempted to answer the question most commonly asked of the
computer scientist: “Is there such a thing as computer science, and if there is,
what is it?” Computer science, according to Simon and his colleagues, was quite
simply the study of computers, just as astronomy was the study of stars and
biology the study of life. The fact that the computer was an artificial rather than
a natural phenomenon was irrelevant: as Simon would later argue in 7he
Sciences of the Artificial, artifacts were perfectly legitimate objects of empirical

research. “Computer science is the study of the phenomena surrounding

31 ACM Curriculum Committee, “An Undergraduate Program in Computer Science -
Preliminary Recommendations,” Communications of the ACM 8, 9 (1965), 544.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184 From “Black Art” to Industrial Discipline

computers ... the computer is not just an instrument but a phenomenon as well,
requiring description and explanation.”*

As the historian Paul Ceruzzi has suggested, by the end of the 1960s most
computing theorists had adopted the definition of their discipline that has since
come to dominate modern computer science, at least as it is practiced in the
university: computer science is the study of algorithms.*® Implied in this
definition is the notion that the algorithm is as fundamental to computing as
Newton’s Laws of Motion are to physics. By founding their discipline on the
algorithm rather than on engineering practices, computer scientists could claim
fellowship with the sciences: computer science was science because it was
concerned with discovering natural laws about algorithms. As Peter Wegener
described in his 1970 “Three Computing Cultures,” “The notion of a mechanical
process and of an algorithm (a mechanical process which is guaranteed to
terminate) are as fundamental and general as the concepts that underlie the
empirical and mathematical sciences.”* In his 1968 classic Fundamental
Algorithms, computer scientist Donald Knuth attempted to situate “the art of

programming” on a firm foundation of mathematical principles and theorems.

That same year the Association for Computing Machinery released their

”

32 Herbert Simon, Allen Newell, and Alan Perlis, “Computer Science (letter to editor),
Science 157, 3795 (Sept. 22, 1967), 1373-1374.

38 See Cerruzi, “Electronics Technology and Computer Science.”

3 Peter Wegener, “Three Computer Cultures: Computer Technology, Computer
Mathematics, and Computer Science,” Advances in Computers 10 (1970), 9.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 185

influential “Curriculum ‘68” guidelines, which encouraged university computer
science departments to drop electronics and hardware courses in favor of
mathematics and algorithms offerings.®

Emerging as it did from the large hardware development projects of the
1940s, computer science was from the very beginning an interdisciplinary
enterprise. This was both a strength and a weakness. All of the early recruits to
the discipline had necessarily come from established departments. As William
Aspray has suggested, computer science crossed virtually every academic
boundary then established within the university, drawing content and people
from mathematics, electrical engineering, psychology, and business.* Conflict
between computer science and these older departments was inevitable. Some of
the traditional disciplines felt threatened by the newcomer. At Harvard and
Princeton, for example, undergraduate enrollments grew rapidly in computer
science while they stagnated in other areas of applied science and engineering.
At Penn and MIT, an increasing number of electrical engineering students chose
to focus on computer-related subjects rather than on other areas of electrical
engineering. As computer-related sub-fields began drawing resources and

students from traditional disciplines, heated battles erupted over faculty slots,

3% ACM Curriculum Committee, “Curriculum 68: Recommendations for Academic
Programs in Computer Science,” Communications of the ACM 11, 3 (1968), 151-157.
% Aspray, “Was Early Entry a Competitive Advantage?,” 65.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186 From “Black Art” to Industrial Discipline

graduate admissions, and courses. Its early success at attracting students and
resources notwithstanding, computer science was repeatedly forced to defend its
academic legitimacy.

One of the accusations frequently leveled against computer science was that
is represented little more than a grab-bag of techniques, heuristics, and
equipment. “Any science that needs the word ‘science’ in its name is by
definition not a science,” claimed one contemporary aphorism.” The discipline’s
close association with computer hardware was evoked to disparage its

intellectual legitimacy:

The creation of computer science departments is analogous to creating
new departments for the railroad, automobile, radio, airplane or television
technologies. These industrial developments were all tremendous
innovations embodied in machinery, as is the development of computers,
but this is not enough for a discipline or a major academic field. A
“discipline” is based upon a cohesive and consistent body of theory or
theories along with a “bag of analytical” tools which are used to apply the
theory. “Computer science” represents only a tool or technique without a
body of cohesive and consistent theory. Therefore, it can hardly be
classified as a discipline demanding a separate curriculum and an isolated
program.®

As Atsushi Akera has described in his study of early scientific computing

efforts, many of the pioneering academic computing experts emerged out of the

central computing facilities that provided computational services to other

%7 See Cerruzi, “Electronics Technology and Computer Science.”
% Jack Carlson, “On determining CS education programs (letter to editor),”
Communictions of the ACM?9, 3 (1966), 135.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 187

researchers. In order to take full advantage of expensive computing equipment,
these facilities often served multiple departments (and in some cases, multiple
universities). As personnel from these computing centers moved into newly
founded computer science departments, they had difficulty shedding their image
as service providers rather than legitimate researchers.” Computer science “is
viewed by other disciplines as a rather easily mastered tool,” computer theorist
David Parnas warned an ACM Curriculum Committee. “It is easy, in any field,
to confuse the work of a technician with the work of a professional, but this is
easier in computer science because a worker in another discipline will consider
himself an 'expert’ after learning to use a computer to process his data.”*

The precarious status of computer science within the academic hierarchy was
a subject of much discussion and concern within the computing community. In
his 1966 presidential address to the ACM, Anthony Oettinger described an
encounter with the Committee on Science and Public Policy of the National
Academy of Sciences. The incident revealed what Oettinger called “numerous

misconceptions about computer science within high councils of science and

government,” among them that

¥ The best available source on this material is Atsushi Akera, Calculating a Natural
World: Scientists, Engineers and Computers in the United States, 1937-1968 (Ph.D.
dissertation, University of Pennsylvania, 1998).

% David Parnas, “On the preliminary report of C3S (letter to editor),” Communications
of the ACM9, 4 (1966), 242-243.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188 From “Black Art” to Industrial Discipline

1)...the computer is just a tool and not a proper intellectual discipline;

2) Almost all creative computer designers and software inventors have
been trained either as pure mathematicians or as experimental physicists.
In other words, the really creative people in computers are those who
were led into the field by a challenge of a problem in their own field;

3) There are not many good people in computer science as such...;

4) The training of faculty and students in computer usage can better be
done by people in the various disciplines who have acquired computer
experience, rather than by a separate cadre of computer scientists;

5) It is not the business of universities to train computer center managers
or systems experts;

6) The [future potential?] of computers has been overrated, and when the
current fad subsides, many universities will have ... badly overextended
themselves with respect to both equipment and teaching/research
commitments in computer science per se.

7) Computer science is not a coherent intellectual discipline but rather a
heterogenous collection of bits and pieces from other disciplines...

Oettinger’s report deftly summarized the most common objections raised
against computer science by contemporary critics. Judging from the reaction that
he provoked from the ACM membership, there was a real fear within the
computer science community that their discipline was considered little more
than a “momentary aberration in the fields of mathematics and electrical

engineering.”*' Qettinger himself later confessed to having doubts about
gineering g &

41 Robert Rosin, “Relative to the President's December Remarks,” Communications of the
ACM10, 6 (1967), 342.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 189

whether or not “computer science is a science.”* Computer science was difficult
to categorize, he suggested, because “on the one hand it has components of the
purest mathematics and on the other hand the dirtiest of engineering.” Paul
Ceruzzi has suggested that computer science as it existed in the 1950s and ‘60s
was what Edward Layton referred to as an “engineering science,” meaning that
it “took on the qualities of the sciences in their systematic organization, their
reliance on experiment, and in the development of mathematical theory.”*
Progress in the engineering sciences often occurred in the absence of any formal
or useful theories. Although computer science would, by the end of the 1960s,
adopt the algorithm as its principle subject of analysis, it had difficulty
articulating any unifying themes or theories that would convince the academy
that it was a truly scientific discipline rather than a miscellaneous collection of
techniques applied to business, technology and science.

The response of the academic computer science community to accusations of
insufficient theoretical rigor was understandable: they focused increasingly on
those aspects of their discipline that most resembled traditional science and
mathematics. Most of the model curricula proposed in this period emphasized

algorithm theory and numerical analysis. Few included much in the way of

“ “T am not sure that computer science is a science “ - Anthony Oettinger, “The
Hardware-Software Complexity,” Communications of the ACM10, 10 (1967), 604.
* Edward Layton cited in Cerruzzi (1989); Walter Vincenti cited in Ceruzzi (1989).

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190 From “Black Art” to Industrial Discipline

business data processing, or even practical programming courses, for that matter.
While this might have been a good strategy from the point of view of academic
program-building, it brought the academic computer scientists into conflict with

their colleagues in industry.

“Cute programming tricks”

In 1968, Bell Laboratories research scientist Richard Hamming was awarded
the Association for Computing Machinery’s prestigious Turing Award. In his
award lecture, entitled “One Man's View of Computer Science,” Hamming
addressed one of the most pressing concerns of his discipline: the relationship
between theory and practice in computer science education. Although
Hamming was a firm believer in the inclusion of advanced mathematics in the
computer science curriculum, he criticized what he believed was an over-
emphasis on theory. "At present there is a flavor of 'game-playing’ about many
courses in computer science. I hear repeatedly from friends who want to hire
good software people that they have found the specialist in computer science is
someone they do not want. Their experience is that graduates in our programs
seem to be mainly interested in playing games, making fancy programs that
really do not work, writing trick programs, etc., and are unable to discipline their
own efforts so that what they say they will do gets done on time and in practical

form." If the discipline were going to turn out “responsible, effective people

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 191

who meet the real needs of our society,” Hamming suggested, computer science
departments must abandon their love-affair with pure mathematics and embrace
a hands-on engineering approach to computer science education. He criticized
the ACM’s recently released “Curriculum ‘68” report for its neglect of practical
training and laboratory work.*

Hamming was hardly the only member of the computing community to find
fault with the increasingly theoretical focus of contemporary computer science.
In the 1940s and 1950s, electronic computers were primarily a scientific and
military technology, and computer programming as a discipline retained a close
association with the practice of mathematics. The limitations of early hardware
devices often meant that a simple programming problem could quickly turn into
a research excursion into algorithm theory and numerical analysis. For example,
many of these machines did not have floating-point hardware, so programmers
had to execute complicated calculations to ensure that the values of the variables
would stay within the machine's fixed range throughout the course of the
calculation. By the beginning of the 1960s, however, computer technology had
become reliable and inexpensive enough to be adopted by a wide variety of
commercial organizations. Most of these organizations used computers for

business data processing rather than scientific analysis. The skills involved in

“ Richard Hamming, “One Man's View of Computer Science,” chap. in ACM Turing
Award Lectures: The First Twenty Years, 1966-1955(New York: ACM Press, 1987).

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192 From “Black Art” to Industrial Discipline

programming business applications were very different from those required in
scientific computing, and for many corporate employers it was not at all clear
how a computer science education was relevant to software development.

As early as 1959 the consulting firm Price-Waterhouse had published a study
on “Business Experience with Electronic Computing” that questioned the

relevance of mathematics to real-world programming problems:

Because the background of the early programmers was acquired mainly in
mathematics or other scientific fields, they were used to dealing with well-
formulated problems and they delighted in a sophisticated approach to
coding their solutions...When they applied their talents to the more
sprawling problems of business, they often tended to underestimate the
complexities and many of their solutions turned out to be
oversimplifications.®

In 1958, the Bureau of Labor noted the growing sense of corporate
disillusionment with academic computer science: “Many employers no longer
stress a strong background in mathematics for programming of business or other
mass data if candidates can demonstrate an aptitude for the work. Companies
have been filling most positions in this new occupation by selecting employees

familiar with the subject matter and giving them training in programming

* B. Conway, J. Gibbons, and D.E. Watts, Business experience with electronic computers,
a synthesis of what has been learned from electronic data processing installations (New
York: Price Waterhouse, 1959), 82.

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 193

work.”* A review of literature from the 1950s on the selection of computer
programmers identified only those skills and characteristics that would have
been assets in any white-collar occupation: the ability to think logically; to work
under pressure, and to get along with people; a retentive memory, the desire to
see a problem through to completion; and careful attention to detail. The only
surprising result was that “majoring in mathematics was not found to be
significantly related to performance as a programmer!”¥

During the course of the 1960s computer science managed to establish itself
as an independent academic discipline. Nevertheless, many observers noticed
that academic success did not necessarily translate into practical achievements.
As the keynote speaker at a 1968 Conference on Personnel Research suggested,
“we ought to help the programmer survive by proper education. But who can
we look to for such education? Not the new departments of computer science in
the universities...they are too busy teaching simon-pure courses in their struggle
for academic recognition to pay serious time and attention to the applied work
necessary to educate programmers and systems analysts for the real world.”*

The implication was that the professionalization strategies of academic computer

*® William Paschell, Aufomation and employment opportunities for office workers; a
report on the effect of electronic computers on employment of clerical workers (Bureau
of Labor Statistics, 1958), 11.

“ W.J. McNamara and J.L. Hughes, “A Review of Research on the Selection of Computer

Programmers,” Personnel Psychology 14, 1 (Spring, 1961), 41-42.
% Hal Sackman, “Conference on Personnel Research,” Datamation 14,7 (1968), 76.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194 From “Black Art” to Industrial Discipline

scientists were very different from those of professional business programmers.
The skills and abilities that were rewarded by university administrators were not
necessarily valued within the corporate environment: “These four year
computer science wonders are infinitely better equipped to design a new
compiler that they are to manage a software development project. We don't need
new compilers. We need on-time, on-budget, software development.”*

By the beginning of the 1970s the situation had worsened. “Possibly the most
blatant failure of our industry has been its ineffective efforts at communicating
with the academic community,” argued one 1970 article on the so-called “The
People Problem”: “Ours is the first major industry in modermn history to develop
with only limited support from colleges and universities ... most colleges and
universities still have not initiated degree programs leading to data processing
careers. Those who do offer computer training frequently give the curriculum a
scientific orientation, thus ignoring the additional skills needed by our
industry.”*

Industrial employers became increasingly disgruntled with the products of

the academic computer science departments. They began turning to other

sources of educated practitioners. A 1972 Datamation survey of corporate data

¥ George DiNardo, “Software Management and the Impact of Improved Programming
Technology,” chap. in Proceedings of 1975 ACM Annual Conference (New York:
Association for Computing Machinery, 1975), 288-289.

% J.A. McMurrer and J.R. Parish, “The People Problem,” Datamation 16, 7 (1970), 57.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 195

processing managers noticed “another attitude common to most of Datamation's
wise men: the relative uselessness of departments of computer sciences ... and
the people they are capable of turning out.” For those people thinking about
entering the field, the article recommended, “the consensus advice seems to be:
stay out of computer sciences. Take a bachelor's degree in a technical subject,
add a master's in business administration.””* Fred Gruenberger, himself a

computer science educator, suggested:

Most programming managers in large corporations tell the same story
repeatedly (although regrettably few people listen). Please, they say, give
us well-educated MBAs, not Computer Science graduates ... While this
may seem like a terribly narrow view, it has been repeatedly proven in
both scientific and commercial data processing that programming can be
taught to bright, well-motivated and well-educated people, but that
company identification and a general feeling for “business” can almost
never be taught.”*

Given the perceived lack of a close relationship between the needs of
business and the output of the universities, the rise of computer science as an
academic discipline contributed little to the professionalization of data
processing. Employers look to other mechanisms for insuring the quality of their

workforce, particularly professional certification exams.

51 Robert Forest, “EDP People: Review and Preview,” Datamation 18, 6 (1972), 68.
*2 Fred Gruenberger, “Problems and Priorities,” Datamation 18, 3 (1972), 49.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196 From “Black Art” to Industrial Discipline

Iv. The Certified Public Programmer

In 1962 the editors of the data processing trade journal Datamation called for
the creation of a new technical profession: the certified public programmer. The
establishment of a rigorous certification program for computer personnel, they
argued, would help resolve some of the “many problems” that were
“embarrassingly prominent” in the software industry.® By defining clear
standards of professional competency, an industry-wide certification program
would serve several important purposes for the nascent programming
profession. First, it would establish a shared body of abstract occupational
knowledge - a “hard core of mutual understanding” — common across the entire
professional community. Secondly, it would help raise the public’s view of
computing professionals “several impressive levels from its current stature of
cautious bewilderment and misinterpretation to at least, confused respect.” >
Finally, and perhaps most significantly, it would enable computer professionals
to erect entry barriers to their increasingly contested occupational territory:

“With a mounting tide of inexperienced programmers, new-born consultants,

and the untutored outer circle of controllers and accountants all assuming

* Editorial, “Editor's Readout: The Certified Public Programmer,” Datamation 8, 3
(1962), 23-24.
> Ibid.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 197

greater technical responsibility, a need for qualification of competence is clearly
apparent.”>

The Datamation editorial coincided neatly with the announcement by the
National Machine Accountants Association (NMAA) of their new Certificate in
Data Processing (CDP) examination. The NMAA, which would later that year
rename itself the Data Processing Management Association (DPMA), represented
almost 16,000 data processing workers in the United States and Canada. The
NMAA had been working since 1960 to develop the CDP exam, which
represented the first attempt by a professional association to establish rigorous
standards of professional accomplishment in the data processing field.
According to their 1962 press release, the exam was intended to “emphasize a
broad educational background as well as knowledge of the field of data
processing,” and to represent “a standard of knowledge for organizing,
analyzing and solving problems for which data processing equipment is
especially suitable.” It was open to anyone, NMAA member or not, who had
completed a prescribed course of academic study; who had at least three years

direct work experience in punched card and/or computer installations; and had

“high character qualifications.”* The educational requirements were waived

* Ibid.
% In response to criticism from the many otherwise qualified programmers who did not
have formal mathematical training or college-level degrees, the educational

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198 From “Black Art” to Industrial Discipline

through the 1965 examinations, however. The exam included 150 multiple
choice questions on programming, numerical analysis, Boolean algebra,
applications, elementary cost accounting, English, and basic mathematics (not
including calculus). The first year it was offered, 1,048 applications took the CDP
examination, 687 successfully.”

The DPMA was not the only organization interested in establishing
certification standards for data processing personnel. Employers and
programmers alike were frustrated by the inability of standard selection
mechanisms — such as a college-level mathematics degree - to tangibly assist in
the recruitment and training of programmers.”® “Could you answer for me the
question as to what in the eyes of industry constitutes a 'qualified’ programmer?”
pleaded one Datamation reader: “What education, experience, etc. are
considered to satisfy the 'qualified’ status?”® Given this lack of agreement about
what skills and educational background were appropriate for data processing
personnel, certification programs promised to guarantee at least a basic level of

competence. Employers viewed certification as means of screening potential

requirements were suspended until 1965. The other prerequisites — three year’s
experience and “high character qualifications” — were so vague as to be almost
meaningless, and seem to have been only selectively enforced.

*” Datamation Report, “Certificate in Data Processing,” Datamation9, 8 (1963), 59.

% John Hanke, William Boast, and John Fellers, “Education and Training of a Business

Programmer,” Journal of Data Management 3, 6 (June, 1965), 38-53.
* John Callahan, “Letter to the editor,” Datamation 7, 3 (1961), 7.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 199

employees, evaluating performance, and assuring uniform product and quality.”
Programmers saw it as an indication of professional status, a means of assuring
job security and achieving promotions, and an aid to finding and obtaining new
positions.® Furthermore, the certification of practitioners was considered one of
the characteristic functions of any legitimate profession.®” The establishment of a
successful certification program was thought to be the precondition for
professional recognition.

For more than a decade the DPMA offered the only real certification option
available to aspiring EDP professionals.® Although the CDP program was
criticized by some as overly broad and superficial, by the end of 1965 almost
seven thousand programmers had taken the exam, and the CDP appeared to be
well towards becoming a widely-accepted industry certification standard. Some
large firms such as State Farm Insurance, the Prudential Insurance Company of

America, and the U.S. Army Corps of Engineers extended official recognition to

% Richard Canning, “The Question of Professionalism,” EDP Analyzer6, 12 (1968), 1.

8! Richard Canning, “The DPMA Certificate in Data Processing,” EDP Analyzer3,7
(1965), 1-12.

%2 Sidlo, “The Making of a Profession,” 366.

% One of the few real competitors to the CDP was the Basic Programmers Knowledge
Test (BPKT) developed at the University of Southern California in 1967. One of the
criticisms that had been frequently leveled against the CDP was that it was broad rather
than deep, and that its multiple choice format could only test for basic knowledge, not
general competency. The BKPT was designed to test real-world programming
proficiency, rather than aptitude or awareness. Although the early success of the BPKT
prompted the DPMA to introduce its own version of a programming proficiency test,
the Registered Business Programmers (RBP) examination, neither was widely embraced
by the business community.

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200 From “Black Art” to Industrial Discipline

the CDP program, and the job specification for senior data processing jobs at a
Washington, D.C. consulting firm called for both a college degree and a CDP. *
The city of Milwaukee used the CDP as a means to assign pay-grades to data
processing personnel.®® In 1966, the DPMA mounted a major promotional
campaign for the CDP program that included press releases, radio
advertisements, and television “informercials.”®

In 1965, 6,951 individuals took the CDP examination, and another 4,000
persons completed CDP refresher courses conducted by local DPMA chapters.*’
By the end of 1975, 31,351 candidates had taken the CDP and 15,115 had been
awarded the certificate.®® Although it is difficult to find accurate employment
information for software workers in this period, estimates from the Bureau of
Labor indicate these 15,115 CDP recipients constituted approximately ten percent
of the overall programming community.*® Figure 3.6 shows, for the years
between 1962 and 1973, the total number of candidates taking the exam, the total

number of candidates who passed the exam, and the cumulative number of CDP

holders.

J.A. Guerrieri, “Certification: Evolution, Not Revolution,” Datamation 14, 11 (1973),
101.

% DPMA Certificate Panel (1964) Charles Babbage Institute Archives, CBI 46, Box 1, Fld.
17.

% Charles Babbage Institute Archives, CBI 116, Box 1, Fld. 10.

¢ Jerome Geckle, “Letter to the editor,” Datamation11,9 (1965), 12-13.

%8 Richard Canning, “Professionalism: Coming or Not?,” EDP Analyzer14, 3 (1975), 1-12.
* William C. Goodman, “The software and engineering industries: threatened by
technological change?,” Monthly Labor Review, Bureau of Labor Statistics, August 1996.

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 201

CDP Recipients, 1961-1973

Figure 3.6: CDP Recipients, 1961-1973.
Figure 3.6 reveals the mixed fortunes and troubled history of the CDP

examination. The striking early success of the program, which more than
quintupled in size in its first three years, suggests that many programmers saw
certification as an attractive professional strategy. This corresponds well with
evidence from industry journals and other documentary sources. A survey of the

1963 candidates reveals a remarkable range of background, experience, and

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202 From “Black Art” to Industrial Discipline

education.” For the 1966 examination session, however, the education
requirements outlined in the original 1962 program announcement were finally
putinto place. These requirements included specific courses in math, English,
managerial accounting, statistics, and data processing systems. Whereas
participation in the 1965 exam had jumped by more than three hundred percent
from the previous year (possibly in anticipation of the imposition of these
requirements), applications for the 1966 session dropped by almost eighty-five
percent. Of the eighty-eight scheduled examination sites, twelve were dropped
for lack of attendance. A major controversy erupted within the data processing
community, particularly in DPMA-oriented publications such as Dafamation and
Computerworld.

Advocates of the academic requirements argued that such requirements not
only elevated the status and legitimacy of the CDP, but were standard for most
other professions, including law, medicine, engineering, and accounting.
Opponents claimed that the specific course requirements were ambiguous,
meaningless, and irrelevant. The DPMA Committee for Certification, which
administered the CDP program, was flooded with letters from disgruntled

applicants requesting special dispensation. Each case had to be individually

7 CDP Advisory Council, Minutes of the Third Annual Meeting, Jan 17-18, 1964. Charles
Babbage Institute Archives, CBI 88, Box 2, Fld. 3.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 203

evaluated.” In 1966 only 1,005 candidates were approved to sit for the exam. In
1967, this number dropped to 646. This posed not only financial difficulties for
the DPMA, but also presented a grave threat to the perceived legitimacy of the
entire CDP program. Faced with the imminent collapse of their membership
support, the DPMA admitted that “the established eligibility requirements had
unintentionally excluded some of the people for whom the CDP program was
originally designed.””” The Committee dropped the specific course
requirements, providing a grandfather clause for those with three years
experience prior to 1965, and requiring others to have only two years of post-
secondary education. Applications for the 1968 exam session jumped back to
almost three thousand.

Over the next several years, the CDP program struggled to regain its initial
momentum. Annual enroliments dropped again briefly in 1969, then leveled off
for the next several years at about 2,700. In an industry characterized by rapid
expansion, this noticeable lack of growth represented a clear failure of the CDP
program. With each year CDP holders came to represent a smaller and smaller
percentage of the programming community. In 1970 the program faced yet

another crisis: the announcement that a Bachelor’s degree would be required of

7! Charles Babbage Institute Archives, CBI 116, Box 1, Fld. 26.
72 —, “DPMA Revises CDP Test Requirements,” Dafa Management(August 1967), 34-
35.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204 From “Black Art” to Industrial Discipline

all CDP candidates, beginning with the 1972 examination. Once again a
firestorm of debate broke out. The DPMA claimed that this new requirement
merely reflected the changing realities of the labor market: since a college degree
had already become a de facto requirement within the industry, requiring
anything less for the CDP would severely undermine its legitimacy. The
resulting controversy highlighted already existing tensions within the data
processing community, and further divided the already fragmented DPMA
Certification Council (many of whose own members could not satisfy the new
degree requirement). Numerous observers called for the DPMA to relinquish
control of the CDP examination to an independent certification authority. By the
middle of the 1970s it became increasingly clear that the CDP program faced
imminent dissolution.

In an attempt to restore momentum to their flagging certification initiative,
the DPMA joined forces with seven other computing societies — the Association
for Computing Machinery (ACM), the IEEE Computer Science Society, the
Association for Computer Programmers and Analysts (ACPA), the Association
for Educations Data Systems (AECS), the Automation One Association (A1A),
the Canadian Information Processing Society (CIPS), and the Society of Certified
Data Processors (SDCP) — to form the Institute for Certification of Computer

Professionals (ICCP). The DPMA had always been extremely possessive of its

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 205

certification program, and its decision to relinquish control to an independent
foundation reflects a growing sense of desperation about the future of the CDP.”
The ICCP was charged with upgrading and expanding the CDP program,
introducing new specialized examinations, and promoting professional
development. In 1973 the ICCP took over responsibility for the CDP
examinations. It also worked to develop a code of professional ethics to be
adopted by its member organizations.

The ICCP failed to revive the CDP or to institute a meaningful certification
program of its own. Because it represented such a wide variety of constituents,
the ICCP was hindered by the same internal divisions that plagued the larger
programming community. Rivalries among the constituent member societies,
many of whom were only superficially committed to the concept of certification,
doomed the organization to internal conflict and inactivity.” This failure of the
various competing professional associations to cooperate crippled the ability of
the ICCP to develop meaningful certification standards. No single program was
able to reflect the diverse needs of the collective software community.

Furthermore, a series of highly critical assessments of the validity of the CDP

7 Letter from R. Higgings, Charles Babbage Institute Archives, CBI 46, Box 2, Fld. 14.
7 Paul Armer, “Editor's Readout: Suspense Won't Kill Us,” Datamation 19, 6 (1973), 53.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206 From “Black Art” to Industrial Discipline

examinations weakened popular and industry support.” The ICCP failed to
present appealing alternative programs or examinations, and the organization
languished during the 1970s.

In response to the inability of the professional associations to establish
rigorous certification programs, the Society of Certified Data Processors (SCDP)
adopted an approach to professional standards that circumvented the ICCP
altogether: state licensing of computer professionals. The SCDP was a grass-roots
organization of CDP-holders dedicated to improving the status and legitimacy of
the CDP program. Founded by the self-proclaimed gadfly Kenniston W. Lord,
the SCDP frequently challenged the wisdom and authority of associations such
as the DPMA and ICCP. For many years, Lord and his fellow SCDP member
Alan Taylor carried out a vituperative verbal campaign against the DPMA (and
later the ICCP) in the pages of the weekly newspaper Computerworld’® Taylor,
a popular columnist for Computerworld, accused the DPMA of running the CDP
examinations as a profit-making enterprise rather than as an independent
professional development program.” When the SCDP was denied formal
representation in the ICCP in 1973, Lord proposed what was effectively a

government takeover of responsibility for programmer certification. Unlike the

” R.N Reinstedt and Raymond Berger, “Certification: A Suggested Approach to
Acceptance,” Datamation 19, 11 (1973), 97-100.

76 Charles Babbage Institute Archives, CBI 88, Box 22, FI1d. 22.

7 Charles Babbage Institute Archives, CBI 116, Box 11, Fld. 42.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 207

certification programs voluntarily adopted by individuals and associations,
however, government licensing would be mandatory. Since it is illegal to
practice a licensed profession without the prior approval of the state, entry into
that profession could be tightly controlled and monitored. Licensing would
provide both control and protection, as well as a certain degree of public
recognition and legitimacy.

In 1974, the SCDP developed a model licensing bill and submitted it to a
number of state legislatures. According to its model legislation, no person in a
state which passes the SCDP bill could “practice, continue to practice, offer or
attempt to practice data processing or any branch thereof” without either 1)
achieving a four-year degree in data processing and three years related
experience or 2) successfully completing a certification examination and five
years experience. The bill also provided a five-year window in which those with
twelve years of experience could be “grandfathered” into the profession.
Practitioners were granted a 24-month grace period in which to acquire the
necessary qualifications. The legislation covered a wide variety of occupational
activities and titles, including any that made use of the terms “data processing,”
“data processing professional,” “computer professional,” or any of their

derivatives. The state was given the power to revoke the certification of any

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208 From “Black Art” to Industrial Discipline

registrant who committed fraud, was proved guilty of negligence, or who
violated the professional code of ethics.”

The proposed SCDP legislation is notable as the only concerted attempt in
this period to encourage government involvement in the programming labor
market. In fact, the specter of externally imposed state regulation had often been
raised as a primary justification for establishing certification programs in the first
place: since self-regulation was considered to be one of the defining
characteristics of a profession, surrendering control over this function to the state
was essentially an admission of defeat. Observers warned that the lack of a
solution from within the science would result in a solution imposed from
without: “In several fields, the lack of professional and industrial standards has
prompted the government to establish standards.”” Ironically enough, even the
defeat of the SCDP legislation proved humiliating to some practitioners, the
state’s unwillingness to legislate DP activities was perceived as a slight to the
entire industry’s importance and reputation.®

Although the model SCDP legislation was adopted by none of the states to
which it was submitted, the fact that it was proposed at all reveals one of the

primary shortcomings of voluntary certification programs such as the CDP: the

78 SCDP Draft Legislation (1974), Charles Babbage Institute Archives, CBI 116, Box 11,
Fid. 42.

7 David Ross, “Certification and Accreditation,” Datamation 14,9 (1968), 183; T.D.C.
Kuch, “Unions or licensing? or both? or neither?,” Infosystems (January 1973), 42-43.
¥ Charles Babbage Institute Archives, CBI 116, Box 11, Fld. 42.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 209

lack of effective methods of enforcement. The inability, or unwillingness, of
associations like the ACM and DPMA to self-regulate was widely criticized by
industry observers. Neither group had ever taken action against a member
accused of fraud or negligence, and both had reputations for being unwilling to
take strong positions on issues of public interest or safety. Indeed, the DPMA
was unable even to enforce the proper use of the trademark. Individuals and
organizations who abused the CDP designation, either by claiming to have
received a CDP when in reality they had not, or by instituting their own CDP
programs, received only ineffective warning letters. No legal action appears to
have been taken.’’ According to SCDP president Kenniston W. Lord, the
inability of the profession to regulate its own activities justified drastic action in

regard to state licensing:

... one does not truly have a profession until one has the ability, legally, to
challenge a practitioner and when proven guilty, to see that he is
separated from the practice ... There are several sets of codes of ethics in
existence, all reasonable thought out ... and all missing one key element —
teeth. Or more specifically, leverage. Proved violations can lead to the
removal of a certificate or the slapping of hands, but beyond that, nothing.
This is one problem that the SDCP bill will solve.®

The lack of ability and willingness of the DPMA to equip its certification
program with “teeth” was not the only reason why the CDP failed to achieve

widespread industry acceptance, however. The program had other

5! Charles Babbage Institute Archives, CBI 88, Box 18, Fld. 26.
2 Kenneth W. Lord, quoted in R. Canning, “Professionalism — Coming or Not?”

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210 From “Black Art” to Industrial Discipline

shortcomings as well. From almost the very beginning the examinations had
been tainted by accusations of fraud and incompetent administration. In 1966
several individuals reported receiving offers from an existing CDP holder to take
their examinations for them for a fee.®* A copy of the 1965 exam was stolen from
a locked storage cabinet at California State College, and its disappearance was
covered up by the DPMA Committee for Certification.* Complaints about
testing conditions and locations were frequent and vociferous. For example, at
one examination site at the University of Minnesota, the noise caused by nearby
drama club rehearsal of a sword fight scene “was so severe as to shower the
room with particles of plaster.”®* Other examinees suggested that poorly trained
proctors (“the little old lady who passed out the papers”) were not only unable to
answer even basic questions about content and procedure, but in some cases
switched rooms without notice, started sessions early for personal convenience,
and misplaced completed examination booklets.*® Although such administrative
snafus were hardly unique to the CDP program, they undermined public

confidence in the ability of the DPMA to adequately represent the profession.

% DPMA Board of Directors, 9" Meeting, March 11-12, 1966. Charles Babbage Institute
Archives, CBI 88, Box 2, F1d. 7.

% DPMA Board of Directors, 12" meeting, 1967 Las Vegas. Charles Babbage Institute
Archives, CBI 88, Box 2, Fld. 8.

8 Ibid.

% Charles Babbage Institute Archives, CBI 116, Box 1, Fld. 9.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 211

Another reason why the DPMA was unable to push through its certification
initiative was a lack of support from other professional associations. A 1968
article on certification and accreditation in the Communications of the ACM
failed to mention the CDP program. This conspicuous neglect of the most
successful certification program then available reflects a growing tension
between the two competing professional associations. The ACM recognized that
a successful certification program required a strong controlling organization.
The organization that controlled certification would effectively control the
profession. Indeed, the 1959 proposal that launched the CDP program suggested
that "The first association to undertake a Data Processor's Certificate is going to
be the leading association in the data processing field."¥” Opposed to the idea
that this controlling organization could be anything but the ACM, the Executive
Council of the ACM worked to undermine the efforts of the DPMA at every
occasion. In 1966 the Council considered a resolution, clearly aimed at the CDP,
to "warn employers against relying on examinations designed for
subprofessionals or professionals as providing an index of professional

competence."® Later that year they established a Committee to Investigate the

¥ The Certificate and Undergraduate Program (1959), Charles Babbage Institute
Archives, CBI 46, Box 1, Fld. 13.

¥ Notes on ACM (1966) Charles Babbage Institute Archives, CBI 46, Box 1, FId. 3. An
early draft of this document referred specifically throughout to the “DPMA certification
program.” Although the final version referred only to certification programs in the
abstract, the target of its attacks was obviously the CDP.

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212 From “Black Art” to Industrial Discipline

Implications of the CDP. The first order of business for the Committee was the
drafting of a strongly worded objection to the use of the word “professional” in
association with the DPMA exam, and the wording of subsequent exam and
program literature eliminated all references to such language: CDP therefore
came to stand for “Certified Data Processor,” rather than “Certified Data
Professional.”® Even this modest acronym was offensive to some professional
groups. A member of a SHARE (an influential IBM users group) panel on
certification was “disturbed to read [the] statement that many DPMA certificate
holders are beginning to use the initials "CDP" in their titles.” Such pretentious
behavior, he suggested, “will quickly bring down upon DPMA the wrath of
other professions. It is probably illegal in some states. I fail to see how it can
conceivably benefit the cause of professionalism which DPMA and others of us
are working toward.”” Although the DPMA insisted that “many persons who
use the CDP initials do so more to publicize the certification program,” than to
promote their own personal interests, pressure from competing associations
forced them to abandon many of their more ambitious claims for the CDP
program.” A 1966 statement conceded that “it would be presumptuous at this

early stage in the program to suggest that CDP represents the assurance of

% DPMA Board of Directors, 10" meeting, 1966. Charles Babbage Institute Archives, CBI
88, Box 2, FId. 7.

* Letter from Jack Yarbrough, Charles Babbage Institute Archives, CBI 46, Box 1, Fld. 17.
°! Charles Babbage Institute Archives, CBI 46, Box 1, Fld. 16.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 213

competence, or that the Certificate should be considered as a requirement for
employment or promoticn in the field.”*? It is no wonder that so many employers
and practitioners lost confidence in the ability of the DPMA to successfully
administer an industry-wide certification program.

An even more troublesome problem for the DPMA was resistance from their
primary constituency to their proposed educational requirements. The original
CDP announcement included a list of specific academic prerequisites, including
college-level courses in math, English, managerial accounting, statistics, and data
processing systems, as well as eight out of seventeen possible electives.” Many
of the practicing EDP specialists who formed the core of the DPMA membership
saw such requirements as being irrelevant, unattainable, or both. When the
educational requirements were first enforced in 1966, applications dropped by
more than eighty-five percent, never to recover.

The problem was not only that the new educational requirements were
overly stringent for many aspiring EDP professionals; they were also entirely too
specific. What exactly counted as a math, English, or managerial accounting
course? Course titles and descriptions varied greatly by institution. Each
application had to be evaluated individually to determine which courses

legitimately counted towards the requirement. The Committee for Certification

%2 Charles Babbage Institute Archives, CBI 46, Box 1, Fld. 3.
* Datamation Report, “Certificate in Data Processing,” 59.

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214 From “Black Art” to Industrial Discipline

was immediately overwhelmed with paperwork: complaints, transcripts, notes
from faculty, requests for exemptions, et cetera. This was in addition to the
massive efforts required to assure that each candidate had the requisite three
years' work experience and “high character qualifications.”** The situation
quickly turned into an administrative nightmare for DPMA officials. The specific
course prerequisites were soon replaced with a more straightforward, although
no less controversial, two-year college requirement. When this prerequisite was
modified to a four-year degree in 1972, opposition became even more vociferous.
The head of the West Tennessee chapter of the DPMA wrote to complain that he,
along with about 1/3 of his chapter’s membership, had suddenly become
ineligible to receive the CDP. A 1970 Computerworld survey indicated that
many practitioners felt the new requirement “unduly harsh” and “ludicrous,”
believing that it would decimate the data processing staffs of many smaller
departments. The always outspoken Herbert R. Grosch (himself a PhD
astronomer and future ACM president) declared that "This policy is very ill-
advised. What the hell is so hot about college - it turns out a bunch of

knuckleheads - and a knucklehead PhD is no better that a knucklehead CDP."®

* It is unclear exactly what was meant by this requirement. It does appear that certain
candidates were eliminated on the basis of having misrepresented their qualifications or
having committed fraud or other crimes, but no written standards for the “high
character qualification” seem to have existed.

* Computerworld August 19, 1970. Charles Babbage Institute Archives, CBI 116, Box 1,
Fld. 27.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 215

Despite the strong negative reaction generated by these educational
requirements, the DPMA leadership continued to insist on their necessity. Such
requirements had always been considered an essential component of the
DPMA's professionalization program: only by defining a “standard of
knowledge for organizing, analyzing, and solving problems for which data
processing equipment is especially suitable” could programmers ever hope to
distinguish themselves from mere technicians or other “sub-professionals.”*
Like the academic computer scientists, business programmers recognized the
need for a foundational body of abstract knowledge on which to construct their
profession; they differed only about what that relevant foundation of knowledge
should include. In insisting on strong educational standards, the DPMA was in
complete accord with the conventional wisdom of the contemporary
professionalization literature.” And by the end of the 1960s, it was true that
many employers did prefer to hire college graduates — although not necessarily
computer science or data processing graduates - for entry-level programming
positions.” According to a study published in September 1968, by the Office of

Education, U.S. Department of Health, Education and Welfare, 61% of 353

business data processing managers surveyed preferred that programmers have a

% Alex Orden, “The Emergence of a Profession,” Communications of the ACM 10, 3
(1967), 145-146.

% Sidlo, “The Making of a Profession,” 367.

% Edward Menkhaus, “EDP: Nice Work If You Can Get It,” Business Automation
(March 1969), 43.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216 From “Black Art” to Industrial Discipline

college degree. Over 60% indicated that education background was a substantial
factor in determining a programmer'’s chances for promotion.” As a recession hit
the industry in the early part of the 1970s, this trend became even more
pronounced.'® An aspiring EDP school graduate, even with a CDP certificate,
had little chance of breaking into data processing without a college degree. As
one of these individuals lamented, “They told me 80% of all programmers don't
have a college degree. Now everywhere I go I'm told they're sorry but they only
want college people.”'” Although the DPMA's decision to raise the educational
requirements for the CDP was highly controversial, it was also probably
justified.

Ultimately, however, the DPMA never managed to convince employers and
practitioners of the relevance of their educational standards, nor, for that matter,
of their certification exams. Neither group was convinced that a CDP meant
much in terms of future performance. The DPMA Certification Council was not
even able to pass a resolution requiring its own officials to possess the CDP.'*? In
1971, the Certification Council decided to drop the baccalaureate degree
requirement. Although this decision was a response to pressure from within the

data processing community, it was widely regarded a sign of weakness rather

¥ Thomas White, “The 70's: People,” Datamation 16, 7 (1973), 42-43.

1% Robert Forest, “EDP People: Review and Preview,” Datamation 18, 6 (1972), 68.

11 Edward Markham, “Selecting a Private EDP School,” Datamation 14, 5 (1968), 33.

12 Executive Meeting Summary (1966). Charles Babbage Institute Archives, CBI 46, Box
1, F1d. 3.

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 217

than judicious concession.!® As the director of the computing center at Virginia
Tech wrote to the president of the local DPMA chapter, “the removal of the
degree requirement has forced all of us to consider the attainment of the CDP not
as an extension of our normal academic and work experience, but, as a matter of
fact, something quite inferior to either one.”'* His letter provides a stinging but
accurate indictment of the failure of the CDP program to achieve widespread

acceptance and legitimacy:

My experience indicates that people seek certification from their
professional peer group for only two reasons. Either it is required by law
or the individual feels that the mark of acceptance stamped upon him by
his peer group is sufficiently important to be worthy of the extra effort to
achieve that certification. Unfortunately, in the data processing profession,
many, certainly most, of the people we recognize as outstanding
professional achievers and accomplishers, do not hold the CDP.'®

One of the major criticisms leveled against the CDP examination by
employers and data processing managers was that it tested “familiarity” rather
than competence.'® It was not clear to many observers what skills and abilities
the CDP was actually intended to certify: “the present DPMA examination
measures breadth of data processing experience but does not measure depth ... It

certainly does not measure or qualify programming ability. It makes no pretense

1% Charles Babbage Institute Archives, CBI 88, Box 18, Fld. 28
104 Thid.

105 Tbid.

1% Canning, “The DPMA Certificate in Data Processing.”

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218 From “Black Art” to Industrial Discipline

of being any measure of management skills.”'” The problem was a familiar one
for the industry: although most employers in this period believed that only
“competent” programmers were could develop quality software, no one agreed
on what knowledge and abilities constituted “competence.”’® As Fred
Gruenberger suggested at a 1975 RAND symposium on certification issues, “I
have the fear that someone who has passed the certifying exams has either been
certified in the wrong things (wrong to me, to be sure) or he has been tuned to
pass the diagnostics, and in either case I distrust the whole affair.”'® His attitude
reflects the ambivalence that many observers in this period felt about
contemporary DP training and educational practices. If data processing was
simply a “miscellaneous collection of techniques applied to business, technology
and science,” rather than a unique discipline requiring special knowledge and
experience, then no certification exam could possibly test for the broad range of
skills associated with “general business knowledge.” “Given the choice between
two people from the same school, one of whom has the CDP, but the other

7 110

appears brighter,” Gruenberger argued, “I'll take the brighter guy.

7 Canning, “The DPMA Certificate in Data Processing”; Jack Yarbrough, Charles
Babbage Institute Archives, CBI 46, Box 1, F1d. 17.

1% Milt Stone, “In Search of an Identity,” Datamation 18, 3 (1972), 53-54.

1% RAND Symposium, ““Problems of the AFIPS Societies Revisited” (1975). Charles
Babbage Institute Archives, CBI 78, Box 3, Fld. 7.

19 Ibid.

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 219

Although the DPMA revised and updated its examinations annually, and
eventually introduced a Registered Business Programmers (RPB) exam intended
specifically for programmers, it was never able to convince the industry of the
relevance of its certification programs. One DP manager suggested that the CDP
was at best “a minor plus for the person who can measure up to other
standards,” but that it would never be considered a “real” qualification for
employment.'"' Another warned of a “lack of confidence” in the validity of the
CDP exam: “I do not expect to apply for a CDP or to use the possession of a CDP
as a criterion for employment.”'"? Still another resented a perceived attempt on
the part of the DPMA to foster a “closed shop” mentality, promising to “continue
to regard the CDP holder with suspicion as to motive and qualification, the level
of suspicion being in inverse proportion to the date of the certificate.”'** In the
absence of a strong commitment to the CDP on the part of employers, many
programmers saw little benefit in participating in the program. Those who did
were increasingly self-selected from the lowest ranks of the labor pool,
individuals for whom the CDP was a perceived substitute for experience and

education.

" DPMA Certificate Panel (1964). Charles Babbage Institute Archives, CBI 46, Box 1, Fld.
17.

2 Letter to Computerworld from Arthur Kaupe, March 1, 1972. Charles Babbage
Institute Archives, CBI 116, Box 1, Fld. 33.

8 Computerworld. Charles Babbage Institute Archives, CBI 116, Box 1, Fld. 30.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220 From “Black Art” to Industrial Discipline

V. Professional Associations

In the spring of 1975, on the eve of the annual National Computer
Conference, a small group of the elite leaders of the computing community met
in a nondescript conference room in a Quality Inn in Anaheim, California to
discuss the future of the computing profession. Similar meetings had been
convened every year for the previous two decades, always with the intent to
address the most pressing issues facing the computing community. Although
the specific composition of the group changed from year to year, the attendees
always represented the highest levels of leadership in the discipline: award-
winning computer scientists, successful business entrepreneurs, association
presidents, prolific authors. The cumulative list of participants reads like a
Who's Who of the computing industry: Gene Amdahl, Paul Armer, Herbert
Bright, Howard Bromberg, Richard Canning, Herb Grosch, Fred Gruenberger,
Richard Hamming, J.C.R. Licklider, Daniel D. McCracken, A.G. Oettinger,
Seymour Papert, and Joseph Weizenbaum, among many others. This particular
meeting included high-ranking representatives from all of the major professional
societies: the Association for Computing Machinery (ACM), the Data Processing
Management Association (DPMA), the IEEE Computer Society, and the Institute
for the Certification of Computer Professionals (ICCP). These societies

represented the largest and most influential constituent members of the umbrella

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 221

organization the American Federation of Information Processing Societies
(AFIPS). On the agenda was a discussion of the role of AFIPS in the professional
development of the discipline.

AFIPS had been founded in 1961 as a society of societies. The immediate
goal was to provide an American representative to the upcoming International
Federation of Information Processing (IFIP) conference. IFIP had been
established several years earlier under the aegis of UNESCO (the United Nations
Educational, Scientific, and Cultural Organization). Beginning in 1959, IFIP
hosted an annual international conference on computing. Each member nation
was allowed to send representatives from a single organization. Since the United
States had no single organization that spoke for its computing community,
AFIPS was created to represent three of the largest computer-related societies:
the Association for Computing Machinery (ACM), the American Institute of
Electrical Engineers (AIEE), and the Institute of Radio Engineers (IRE).'* It was
hoped that AFIPS would eventually come to serve as the single national
spokesman for computer interests in the United States.'”

From the very beginning, AFIPS was a disappointment. AFIPS did represent

the United States at the annual IFIP meeting. It was given control over the

' The AIEE and IRE later merged into the IEEE.
11> Willis Ware, “AFIPS in Retrospect,” Annals of the History of Computing8, 3 (1986),
304.

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222 From “Black Art” to Industrial Discipline

lucrative Joint Computer Conferences, but beyond that, it proved incapable of
serving as “the voice of the computing profession in America.”"* It was crippled
by a weak charter and a lack of tangible support from its founding societies.
AFIPS was a society of societies, not a society of members, and was therefore
dependent on and subservient to the interests of its constituent societies, rather
than to the larger computing community. In addition, several obvious candidates
for membership, including the Data Processing Management Assocation
(DPMA) had been conspicuously excluded from participation, and the AFIPS
voting structure made it obvious that additional members would be
unwelcome.'” Even more limiting was a clause in the constitution, insisted on
by the ACM as an essential precondition for its support, prohibiting AFIPS from
placing itself “in direct competition with the activities of its member societies.”'*®
Although the constitution was revised in 1969 to provide for stronger leadership
and a more inclusive atmosphere, AFIPS continued to struggle for support and

recognition. The DPMA did not join until 1974, for example, and even then

without much enthusiasm. The 1975 gathering of the computing elite at the

16 ARPA survey, 1968 (reference in AFIPS consitution letter, Communications ACM,
March 1969). The East and West Joint Computer Conferences were lucrative annual
trade shows.

"7 Bernard Galler, “The AFIPS Constitution (President's Letter to ACM Membership),”
Communications of the ACM 12, 3 (1969), 188.

18—, “Reflections on a Quarter-Century: AFIPS Founders,” Annals of the FHistory of
Computing 8, 3 (1986), 225-260.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 223

Quality Inn in Anaheim represented one of the many attempts to reinvigorate
interest in this ailing association.'”

The transcripts of the 1975 meeting are revealing. The existence of a
powerful professional association was obviously considered by the elite
leadership of the computing community to be the cornerstone of a strong
professional identity. After all, argued one ACM editorial, “Professions are
organized, established and directed by professional societies; our Association
should represent our profession.”’?® Constant references were made to the role
that the American Medical Association (AMA) played in the advancement of the
medical profession. The AMA provided tangible benefits to its membership: it
maintained standards and controlled access to the profession; it protected them
from adverse legislation; it provided for public relations; it allowed for self-
regulation. Not incidentally, it also served a valuable social function, providing
status and privilege. In any case, strong national associations had served law
and medicine quite nicely: who could doubt that they would do the same for the

computing professions?'*'

19 In 1989, just two years after celebrating its twenty-fifth anniversary, AFIPS voted itself
out of existence. The loss of control over the lucrative National Computing Conferences
left it financially unstable and without any clear means of support. Few in the
community mourned its passing.

12—, “Will you vote for an association name change to ACIS?,” Communications of
the ACM8, 7 (1965), 424.

121 “Problems of the AFIPS Societies Revisited,” Charles Babbage Institute Archives, CBI
78, Box 3, FId. 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

224 From “Black Art” to Industrial Discipline

Despite a general agreement on the value of professional associations, at
least within the confines of the Quality Inn conference room, the debate about the
role and future of AFIPS was surprisingly contentious. Rivalries between the
member societies, particularly ACM and the DPMA, were an endemic problem.
Participants disagreed over membership qualifications, dues, voting privileges,
and certification and licensing proposals. More important, however, was the
lack of widespread popular support for these associations. A 1967 Datamation
article indicated that “Less than 40% [of programmers] belong to any
professional association. Probably less than 1% do anything in connection with
an association that requires an extra effort on the individual's part.”** Even
these low figures were probably inflated: a Wall Street Journal report from the
next year revealed only that 13% of the data processing personnel surveyed
belonged to any professional society.'” These numbers correspond well with the
low level of interest in the CDP certification program.'* Although it is difficult
to compile exact figures on association membership, it is clear that at best only a
small percentage of the eligible population chose to participate in any

professional society.

12 Richard Jones, “A time to assume responsibility,” Dafamation 13, 9 (1967), 160.
12 “Survey on Use of Service Bureaus,” Wall Street Journal (1969). Charles Babbage
Institute Archives, CBI 80, Box 30, Fld. 29.

12 See Figure 3.6 above.

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 225

If strong professional associations were widely perceived to be an important
element of professional identity, why did groups like the ACM, DPMA, and
AFIPS have such difficulty attracting and keeping members? AFIPS had some
obvious structural problems that almost assured its ineffectiveness. Individuals
could not directly join AFIPS; it was merely an umbrella organization for other
associations, and possessed little real authority. But what about the ACM and
the DPMA, the two largest relevant member societies? Both of these groups
were established early, were relatively high-profile, and published their own
widely distributed journals. Both were frequently mentioned as candidates for
the position of the professional computing association. Yet neither was able to
consolidate their control over any significant portion of the discipline’s
practitioners. The reasons behind their failure suggest the limitations of

professional associations as an institutional solution to the software crisis.

The Association for Computing Machinery
On January 10, 1947, at the Symposium on Large-Scale Digital Calculating
Machinery at the Harvard Computation Laboratory, Professor Samuel Caldwell
of MIT proposed to a crowd of more than three hundred the formation of a new
association of those interested in computing machinery. His proposal obviously
landed on fertile soil: within six months a “Notice on the Organization of an

Eastern Association for Computing Machinery” was circulating within the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226 From “Black Art” to Industrial Discipline

computing community, and in September the first meeting of the Eastern
Association for Computing Machinery was held at Columbia University.
Seventy-eight individuals attended. Officers were elected, and an Executive
Council appointed. A second meeting, held in December at the Aberdeen
Proving Grounds in Maryland attracted three hundred participants. The next
year the organization dropped the word “Eastern” from its title, and was
thereafter known as the ACM.

During the 1950s the ACM grew steadily but not spectacularly. By 1951
there were 1113 members, including 43 in other countries; in 1956, the total had
risen to 2305, and by 1959 had reached 5254. In the 1960s, membership grew
somewhat more slowly, and there were a few periods during which the total
number of members actually decreased. Overall, however, the ACM continued
to expand at a rate of about 16% annually. By the end of 1969 there were 22,761
regular members. Figure 3.7 shows the annual membership statistics for the

years 1947-1972.'%

' ACM 15 years. Charles Babbage Institute Archives, CBI 23, Box 1, Fld. 5.

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 227

ACM Membership

Figure 3.7: Association for Computer Machinery Membership, 1961-1973.
From its inception the ACM styled itself as an academically-oriented

organization. Many of the original members either were or had been associated
with a major university computation project, and most were university educated,
a number at the graduate level. The focus of the organization’s early activities
were a series of national conferences, the first of which was co-sponsored by the
Institute for Numerical Analysis at the University of California - Los Angeles.
These meetings represented an outgrowth of an earlier series of university-
sponsored conferences, and they retained an academic character. Many were
low-budget affairs held at universities or research institutions, and frequently

made use of dormitory facilities. The papers presented were usually technical,

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228 From “Black Art” to Industrial Discipline

and the proceedings were published. The ACM conferences never acquired the
trade-show atmosphere that characterized other national meetings. In fact,
deliberate efforts were made to distance the ACM from the influence of the
commercial vendors, particularly IBM."* For many years the ACM resisted
publishing its own journal, possibly because “some early ACM leaders saw the
society as a declaration of independence from IBM, and, by extension, from all
commercial considerations like the sale of publications and the solicitation of
advertising.”'¥ Until 1953, when it began publishing the Journal of the ACM, the
ACM exclusively supported the National Research Council’s highly-technical
journal Mathematical Tables and Other Aids fo Computation. Even then, the
primary contents of the Journa/were theoretical papers, and the emphasis was
on the dissemination of “information about computing machinery in the best
scientific tradition.”'® Articles were peer-reviewed, and every attempt was
made to maintain rigorous academic standards.

Throughout the 1950s and ‘60s the ACM continued to cultivate its
relationship with the academic community. In 1954 it accepted an invitation to

apply for membership in the American Association for the Advancement of

1?6 Particularly the National Computer Conference, which became almost entirely
commercial, resembling a trade show much more than an academic conference.

177 Eric Weiss, “Publications in Computing: An Informal Review,” Communications of
the ACM15, 7 (1972).

128 Saul Gass, “ACM class structure (letter to editor),” Communications of the ACM 2, 5
(1959), 4.

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 229

Science. Since 1958 the ACM has been represented in the Mathematical Sciences
Division of the National Academy of Sciences National Research Council. In
1962 it affiliated with the Conference Board of the Mathematical Sciences, which
also consisted of the American Mathematical Society, the Mathematical
Association of America, the Society for Industrial and Applied Mathematics, and
the Institute of Mathematical Statistics. In 1966, the ACM established the
prestigious Turing Award, the highest honor awarded in computer science.
Almost half of the institutional members of the ACM were educational
organizations, and after 1962 a thriving student membership program was
developed.'®

The close association that the ACM maintained with the academic
computer scientist proved a mixed blessing, however. Although the ACM was
able to maintain a relatively high-profile within scientific and mathematical
circles, it was often castigated by the business community. Many business
programmers looked upon the ACM as “a sort of holier than thou academic
intellectual sort of enterprise - not inclined to be messing around with the
garbage that comptrollers worry about,” and the ACM leadership was

characterized as “a bunch of guys with their heads in the clouds worrying about

' Charles Babbage Institute Archives, CBI 88, Box 22, FId. 1; Charles Babbage Institute
Archives, CBI 23, Box 1, F1d. 15.

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230 From “Black Art” to Industrial Discipline

Tchebysheff polynomials and things like that.”**® A 1963 Datamation article on
“The Cost of Professionalism” warned that the members of the ACM had to
“decide whether it's worth that much to belong to an organization which many
feel has been dominated by - and catered pretty much to- Ph.D. mathematicians
... the Association tends to look down its nose at business data processing types
while claiming to represent the whole, wide wonderful world of computing.”"™!
A 1966 Diebold Group publication characterized the ACM as a group “whose
interests are primarily academic and which is helpful to those with scholastic
backgrounds, theoreticians of methodology, scientific programmers and software
people.” Although the ACM president immediately denied this characterization,
calling it “too narrow,” the popular perception that the ACM catered solely to
academics was difficult to counter.'”?

The ACM leadership was not entirely unaware of or unsympathetic to the
needs of the business programmers. In his unsuccessful 1959 bid for the ACM
presidency, Paul Armer urged the ACM membership to “THINK BIG,” to “

visualize ACM as the professional society unifying a// computer users.”'* That

same year, Herbert Grosch, an outspoken proponent of a strong, AMA-style

% Rand Symposium, 1969. Charles Babbage Institute Archives, CBI 78, Box 3, Fld. 4.
! Datamation Editorial, “The Cost of Professionalism,” Datamation 9, 10 (1963), 23.
32 Anthony Oettinger, “On ACM's Responsibility (President's Letter to ACM
Membership) (1966),” Communications of the ACM9, 8 (1966), 545-546.

13 Paul Armer, “Thinking Big (letter to editor),” Communications of the ACM?2, 1
(1959), 2. Emphasis mine.

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 231

professional society, roundly criticized the ACM for its academic parochialism:
“Information processing is as broad as our culture and as deep as interplanetary
space. To allow narrow interests, pioneering though they might have been, to
preempt the name, to relegate ninety percent of the field to 'an exercise left to the
reader,' would be disastrous to the underlying unity of the new information
sciences.”'® Several attempts were made during the next decade to make the
ACM more relevant to the business community. In response to widespread
criticism of the theoretical orientation of the Journal of the ACM, a new
publication, the Communications of the ACM, was introduced in 1958. The main
contents of the Communications were short articles, mostly unrefereed, on
technical subjects such as applications, techniques, and standards. In 1966 the
Executive Committee announced a $45,000 professional development program
aimed at business data processing personnel. The program included short “skill
upgrade” seminars offered at the national computer conferences, a traveling

course series, and self-study materials.' There was even talk, in the mid-1960s,

3% Herb Grosch, “Plus and Minus,” Datamation 5, 6 (1959), 51.

135 Robert Payne, “Reaction to Publication Proposal (letter to editor),” Communications
of the ACMS8, 1 (1965), 71.

¢ Anthony Oettinger, “ACM sponsors professional development program (President's
Letter to ACM Membership),” Communications of the ACM9, 10 (1966), 712-713.

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232 From “Black Art” to Industrial Discipline

of a potential merger with the DPMA. In 1969, ACM president Bernard Galler
announced a move towards “less formality, less science, and less academia.” '’
Despite these short-lived efforts to reconcile with the business community,
however, the conservative ACM leadership continued to pursue a largely
academic agenda. As early as 1959 it was suggested that the ACM should
impose stringent academic standards on its members, and in 1965 a four-year
degree became a prerequisite for receiving full membership. Frequent battles
arose over repeated attempts to change the name of the association to something
more broadly relevant. In 1965 a proposal to change it to the Association for
Computing and Information Science was rejected; a decade later the same issue
was still being debated.”®® When Louis Fein suggested in 1967 that the ACM
faced a “crisis of identity,” ACM President Oettinger insisted vehemently that
the “ACM has no crisis of identity.” In doing so, he reaffirmed the association’s
commitment to a theoretical approach to computing: “Our science must, indeed,
'maintain as its sole abstract purpose of advancing truth and knowledge.""'*

This commitment to abstract science was further reinforced the following

year when the ACM Committee on Curriculum for Computer Science (C?S)

¥ Bernard Galler, “The Journal (President's Letter to ACM Membership),”
Communications of the ACM 12, 2 (1969), 65-66.

B Wil you vote for an association name change to ACIS?,” Communications of
the ACM 8,7 (1965); Vote on ACM name change (1978) Charles Babbage Institute
Archives, CBI 43, Box 3, Fld. 10.

¥* Anthony Oettinger, “President's reply to Louis Fein,” Communications of the ACM
10,1 (1967), 1.

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 233

announced their Curriculum ‘68 guidelines for university computer science
programs. Curriculum ‘68 advocated a rigorously theoretically approach to
computer science that included little of interest to business practitioners.'’ Even
when the ACM did recognize the growing importance of business data
processing to the future of their discipline, the emphasis was always placed on

research and education:

All of us, I am sure, have read non-ACM articles on business data
processing and found them lacking. They suffer, I believe, from one basic
fault: They fail to report fundamental research in the data processing field.
The question of 'fundamentalness’ is all-important ... In summary, this
letter is intended to urge new emphasis on FUNDAMENTALISM in
business data processing. This objective seems not only feasible but
essential to me. It provides not only a technique for getting ACM into the
business data processing business, but a technique (the same one) for
getting the field of business data processing on a firm theoretical
footing.'*!

There is little question that throughout the 1960s the ACM pursued a
professionalization strategy that was heavily dependent on the authority and
legitimacy of its academic accomplishments.

It was not until the 1970s that the ACM began to seriously reconsider its
policy towards business-oriented practitioners. In 1974 the ACM Executive

Council commissioned a series of studies on business programming as part of its

140 Raymond Wishner, “Comment on Curriculum 68,” Communications of the ACM 11,
10 (1968); Datamation Report, “Curriculum 68,” Datamation 14, 5 (1968); Hamming
(1968).

! John Postley, “Letter to Editor,” Communications of the ACM 3, 1 (1960), A6.

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234 From “Black Art” to Industrial Discipline

long-range planning report. In doing so the ACM was responding both to long-
standing criticism and to a recent spate of anti-ACM editorials that had appeared
in the industry newsletter Computerworld. “ACM had become not so much an
industry professional group,” declared one of these editorials, “as it was a home
for members of educational institutions around the country to overwhelm us
with their erudition on topics of vaguely moderate interest.”*** The author noted
that while most business data processing installations had standardized on the
COBOL and FORTRAN programming languages, the ACM still supported
ALGOL. He quoted ACM president Anthony Ralston to the effect that although
only 25% of the ACM membership were academics, 10 out of 25 council members
were.'

The 1974 long-range report noted that of the 320 thousand software
personnel then working in the United States, 85% dealt with business data
processing (BDP). It admitted that while the ACM had a reputation for
professionalism, “BDP people tend to be turned off by ACM's academically
oriented leadership ... BDP professionals feel that academics don't understand
what BDP needs, and they're right."'* It concluded that any new ACM members

were likely to come from BDP, and recommended the development of a new

2 “Why are business users turned off by ACM?” (1974). Charles Babbage Institute
Archives, CBI 23, Box 1, Fld. 3.

4 Ibid.

“ Ibid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 235

publication aimed at a BDP audience. The report signaled to many in the ACM
that the organization needed to broaden it membership and become more
accommodating. The next few years witnessed a bitterly contested presidential
election (the cornerstone of which was a debate over business data processing);
yet another attempt to change the name of the ACM to something more broadly
relevant; and efforts to reconcile with its business-oriented competitor, the Data

Processing Management Association.

The Data Processing Management Association

The Data Processing Management Organization originated in 1949 as the
National Machine Accountants Association (NMAA). The NMAA was founded
as an association of accountants and tabulating machine managers. In 1952 it
held its first convention in Minneapolis, MN. Ten years later, it represented
almost 16,000 data processing workers in the United States and Canada. In 1962
the NMAA changed its name to the DPMA in hopes of expanding its
membership beyond finance and accounting professionals, and to call attention
to its new CDP certification program. The CDP program was only one of the

DPMA's ambitious “Six Measures of Professionalism Program”:

1) Professionals devote a portion of their efforts to helping newcomers
acquire the knowledge required of practitioners in the field; therefore, a
program of education for the beginner is one mark of professionalism.

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236 From “Black Art” to Industrial Discipline

2) Professionals devote a portion of their efforts to updating their own
knowledge; therefore, a program for self-education is one mark of
professionalism.

3) Professionals possess a minimum level of knowledge of the field;
therefore, a standard way of measuring that knowledge is one mark of
professionalism.

4) Professionals devote a portion of their efforts to contribute to the
knowledge of their field; therefore, a program of continuing research is
one mark of professionalism.

5) Professionals conduct themselves in a way that reflects credit on their
profession or always act in the best interests of the general public and
their profession; therefore, a code of ethics, accepted and practiced, is one
mark of professionalism.

6) Professionals police their own ranks and invoke discipline among
themselves to those who violate the established rules of ethical conduct;
therefore, an effective means of policing and disciplining practitioners is
one mark of professionalism.'*®

In 1967 the DPMA released a report detailing its efforts to fulfill their
professionalism agenda. The Future of Data Processors program worked with
colleges and universities in curriculum development. National conferences, local
chapter programs and seminars, and DPMA publications and home-study
courses were all directed toward the self-education of individual members. The
CDP program was obviously intended to establish a means of “measuring a
minimum level of knowledge in the field.” DPMA Graduate Research Grants

encouraged contributions to the “knowledge of the field.” The DPMA Code of

> DPMA report on “Six measures of professionalism.” Charles Babbage Institute
Archives, CBI 88, Box 21, Fld. 40.

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 237

E'thics dated back to the origins of the association, and was the first of such codes
to be established for the computer-related professions. Finally, although the
DPMA acknowledged that it had no existing mechanisms for determining and
punishing misconduct, the report promised that the association would take a
leading role in the development of an industry policing program. Of the
DPMA'’s attempts to address these “six measures of professionalism,” only the
CDP program achieved even moderate industry acceptance; nevertheless, simply
by articulating a clear professional agenda the DPMA claimed for itself a
leadership role in the computing community.

From the very beginning the DPMA made efforts to reach a broad spectrum
of data processing personnel. In 1964 the national leadership made specific
efforts to include programmers within its membership.'*® The structure of the
organization, which included strong regional chapters, allowed for diversity and
local control. Each region had a representative on the Executive Council who
served with several executive officers and implemented policy decisions from
the International Board of Directors. In addition, the DPMA's official
publication, the Data Management Journal, encouraged submissions on a much
wider range of subjects than did the ACM's Journal or Communications. The

DPMA also maintained a close association with the editors of Daftamation,

¢ Local Chapter CDP publicity (1964). Charles Babbage Institute Archives, CBI 46, Box
1, F1d. 8.

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

238 From “Black Art” to Industrial Discipline

another widely-read industry journal that focused on issues of timely concern
and practical relevance.

The DPMA'’s inclusive approach to professional development brought it into
conflict with competing societies, particularly the ACM. The differences between
two organizations mirrored the larger tensions that existed within the computing
community: academic computer scientists versus the business data processors;
theory versus practice. [have already shown how this tension affected the
adoption of the DPMA’s CDP program: the ACM’s obvious lack of support
helped to undermine the program'’s legitimacy and prevented its widespread
adoption. This opposition was based on grounds both philosophical — many in
the ACM believed that the CDP examinations were superficial and irrelevant —
and institutional, since control over an industry-wide certification program
would have granted the DPMA considerable political authority.'” Despite
several half-hearted attempts to explore an ACM-DPMA merger, or at least to
establish an inter-association liaison, the two groups rarely communicated.'*®

When AFIPS was established in the early 1960s, the NMAA and other industry-

7 Letter re: four year degree requirement (1970) CBI 116.1.27; Misc. Correspondence re:
CDP exams (1973) CBI 46.2.14

8 Notes on ACM/DPMA merger (1964) CBI 88.22.2; Correspondence re: ACM/DPMA
liason (1966) CBI 88.22.1; Discussion of DPMA /ACM merger (1970) CBI 88.22.3

238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 239

oriented groups were treated with dismissive contempt, and the DPMA resisted

AFIPS affiliation until the mid-1970s.'%

Professional societies...or technician associations?

The persistent conflict between the ACM and DPMA reflected a much larger
tension that existed within the computing community. As early as 1959 the
outlines of a battle between academically-oriented computer scientists and
business programmers had taken shape around the issue of professionalism.'”
Although both groups agreed on the desirability of establishing institutional and
occupational boundaries around the nascent computer-related professions, they
disagreed sharply about what form these professional structures should take.
Observers noted a deepening “programming schism” developing within the
industry, a “growing breach between the scientific and engineering computation
boys who talk ALGOL and FORTRAN...and the business data processing boys
who talk English and write programs in COBOL.”™" Individuals who believed
that the key to professional status was the development of formal theories of
computer science resisted “sub-professional” certification programs and tended

to join the ACM; business data processors who were skeptical of “cute

¥ RAND Symposium, “Problems of the AFIPS Societies Revisited,” 1975. Charles
Babbage Institute Archives, CBI 78, Box 3, Fld. 7. At a meeting arranged by AFIPS
officials, DPMA representatives were kept waiting, without explanation or apology, for

over an hour.
Y RAND Symposium, “Is It Overhaul or Trade-in Time? Part II,” Datamation5, 5 (1959).
15! Christopher Shaw, “Programming Schisms,” Datamation 8, 9 (1962), 32.

239

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240 From “Black Art” to Industrial Discipline

mathematical tricks” either supported the DPMA or ignored the professional
societies altogether.

It is clear that the turf battles that raged between the ACM and the DPMA
during the 1950s and ‘60s helped undermine popular support for both
organizations. Inresponse to extensive Datamation coverage of a 1959 RAND
symposium on “the perennial professional society question,” one reader
commented that he “hadn’t laughed so hard in a decade. Are these guys
kidding? You won't solve this problem by self-interested conversation about it,
nor is it solved by founding another organization.”’ In a 1985 retrospective on
the troubled history of AFIPS, Harry Tropp suggested that “the question of turf
seems to have been there from the beginning. It shows up in the [1950s] Rand
Symposium ... There were the hardware and software types and then there were
the users. We had the east coast/west coast turf problems. What I am hearing
today is a whole new evolution of different turfs as this information processing
society explodes.”™® The fact that the DPMA refused affiliation with AFIPS until
the mid-1970s — largely because of the perception that the latter organization was

dominated by the ACM — was a major factor in its perpetual ineffectiveness and

152 Wolf Flywheel, “Letter to the editor (on professionalism),” Datamation 5, 5 (1959), 2.
133 AFIPS Presidents discussion (1985). Charles Babbage Institute Archives, CBI 114, Box
1, Fid. 4.

240

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 241

eventually dissolution. '™ Many observers were dismayed by the pettiness of the
ACM-DPMA debates, which they believed detracted from the overall goal of

establishing a legitimate professional identity:

I couldn't care less who publishes some abstract scientific paper! What I
want to know is how do we pull together a hundred thousand warm
bodies that are working on the outskirts of the computer business, give
them a high priced executive director, lots of advertising, a whole series of
technical journals; in other words, organize a real rip-snorting profession?
Whenever somebody starts worrying about which journal what paper
should be published in, we get bogged down in an academic cross-fire
we've been in for ten years.'*

As damaging as these inter-associational rivalries were to the influence and
reputation of the ACM and DPMA, what really hurt them was the lack of
support that they received from industry practitioners. Neither organization was
able to clearly establish its relevance to the needs of either workers or their
managers. “Neither organization ... has done much for the industry or for
society as a whole,” argued one 1965 Datamation editorial. “We think the time is
ripe to more clearly define larger, more important long-range goals which
distinguish a professional society from a technician's association.”'® Employers
looked to the professional associations to provide a supply of reliable, capable

programmers. As was clear from the impassioned debates about structure and

1> AFIPS was dissolved in 1987, just two years after celebrating its 25" anniversary.
' RAND Symposium, “Is It Overhaul or Trade-in Time? Part II.”

1% Datamation Editorial, “Professional Societies ... or Technician Associations?,”
Datamation 11, 8 (1965), 23.

241

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242 From “Black Art” to Industrial Discipline

relevance of computer science curricula, however, it was far from obvious to
many managers that formal educational programs contributed much to the
production of “professional” programmers. The ACM’s continued devotion to
theoretical computer science made it seem out-of-touch with the practical
demands of business. The DPMA’s CDP program, although it was much more
oriented to business data processing, failed to achieve widespread industry
acceptance. As a result, it also was not able to guarantee the kind of
standardized labor force in which corporations were interested. Employers saw

little value in either organization.

vi. The Limits of Professionalism

In his 1968 monograph on Office Automation in Social Perspective, the
Oxford sociologist H.A. Rhee noted that “The computer elite are beginning to
erect collective defenses against the lay world. They are beginning to develop a
sense of professional identity and values.” But the process of establishing
professional attitudes and controls and a professional conscience and solidarity,
Rhee suggested, had “not yet advanced very far.”” He could just have easily
been describing the computing professions as they existed a decade earlier or a
decade afterward. By 1968 computing had acquired many of the trappings of

professionalism: academic computer science departments, certification programs,

%7 Rhee, Office Automation in Social Perspective, 118.

242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 243

professional associations. And yet most computing practitioners were not
widely regarded as “professionals,” at least not in the eyes of the general public.
In 1967, for example, the U.S. Civil Service Commission declared data processing
personnel to be “non-exempt” employees, officially categorizing programmers as
technicians rather than professionals. Although this decision did not affect the
lives or practices of programmers, it represented a symbolic defeat for
professional associations such as the ACM, who lobbied hard to have it
overturned.™®

The inability of programmers and other data processing personnel to
successfully professionalize raises some perplexing questions for the historian:
given the apparent interest in professionalization on the part of both employers
and practitioners, why were these efforts so ineffective? As was described
earlier, industrial employers in the 1960s complained not as much about
technical incompetence as a general lack of professionalism among
programmers. “It was his distressing lack of professional attributes that most
often undermines his work and destroys his management's confidence,” declared
Malcolm Gotterer. “Too frequently these people, while exhibiting excellent

technical skills, are non-professional in every other aspect of their work.”"”

'*¥ Minutes of the Annual Meeting of the Certification Advisory Council (1967). Charles
Babbage Institute Archives, CBI 116, Box 1, F1d. 13.
¥ Gotterer, “The Impact of Professionalization Efforts on the Computer Manager,” 368.

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244 From “Black Art” to Industrial Discipline

Increased professionalism would presumably address the most frequent
complaints leveled against data processing personnel: an over-reliance on
idiosyncratic craft techniques; an arrogant disregard for proper lines of authority;
shoddy workmanship; a lack of commitment to the best interests of the
organization. On the surface, the professionalization of programming appeared
to be an ideal solution to many of the most deleterious symptoms of the
burgeoning software crisis.

There are a number of explanations for the failure of most
professionalization programs. Internal rivalries within the computing
community undermined the effectiveness of groups such as the ACM and
DPMA. No single organization could meet the needs of a diverse community of
“computer people” that included everyone from Ph.D. mathematicians to high-
school dropout keypunch operators. As Louis Fein suggested in his discussion
of the ACM’s “crisis of identity, “It is not clear ... that an organization can play
simultaneously the role of a profession, of an industry, and of a science ... I
cannot see that ACM members, or IEEE Computer Group members, or DPMA
members, or Simulations Councils, Inc. members, are members of a profession.

They are practitioners or scientists or engineers or programmers-members of a

244

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 245

technical society.”'®® As the programming community broke down into
competing factions — theoretical vs. practical; certified vs. un-certified; ACM vs.
DPMA - its members lost the leverage necessary to push through any particular
professionalization agenda.

In addition to internal rivalries, the aspiring computing professions also
faced external opposition. For many corporate managers, professionalism was a
potentially dangerous doubled-edged weapon: on the one hand,
“Professionalism might motivate staff members to improve their capabilities, it
could bring about more commonality of approaches, it could be used for hiring,
promotions and raises, and it could help determine 'who is qualified."”” Cn the
other hand, “professionalism might well increase staff mobility and hence
turnover, and it probably would lead to higher salaries for the 'professionals.”'*!
Computer personnel were often seen as dangerously disruptive to the traditional
corporate establishment. The last thing traditional managers wanted was to
provide data processing personnel with additional occupational authority.

Professionalism was therefore encouraged only to the extent that it provided a

standardized, tractable workforce; professionalization efforts that encouraged

19 Louis Fein, “ACM Has a Crisis of Identity?,” Communications of the ACM10, 1
(1967).
'¢! Richard Canning, “Professionalism: Coming or Not?,” EDP Analyzer 14, 3 (1976), 2.

245

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

246 From “Black Art” to Industrial Discipline

elitism, protectionism, or anything that smacked of unionism were seen as
counter-productive.

Perhaps the most important reason that programmers and other data
processing personnel failed to professionalize, however, was that the
professional institutions that were set up in the 1950s and 1960s failed to
convince employers of their relevance to the needs of business. A 1974
Computerworld survey indicated that “no technical society has ever captured
and held the attention of professionals in BDP [business data processing].”'*
Employers looked to professional institutions as a means of supplying their
demand for competent, trustworthy employees. As we have seen, although
computer science programs in the 1960s thrived in the universities, in the
business world they were often seen as overly theoretical and irrelevant.
Likewise, the DPMA’s CDP program failed to establish itself as a reliable
mechanism for predicting programmer performance or ability. Neither the ACM
nor the DPMA offered much to employers in terms of improving the supply or
quality of the programming workforce.

Given this lack of active support from employers, the professional
associations had little to offer most data processing practitioners. Neither a

computer science education nor professional certification could ensure

192 “Tust So Programs,” Computerworld (May 15, 1974). Charles Babbage Institute
Archives, CBI 23, Box 1, F1d. 3.

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Professionalization of Programming 247

employment or advancement. In response to a 1974 Computerworld article on
“Why Business Users Are Turned Off by ACM,” AFIPS president George Glaser
suggested that “The general lack of success of ACM in attracting business data
processing professionals to its membership has relatively little to do with the
nature and extent of the services it offers them. It is, rather, more attributable to
a lack of interest on the part of these 'professionals’ in any professional
society.”'® Glaser’s comment can be read either as an indictment of the apathy
of the average computing practitioner or of the policies of the ACM; either way,
it suggests the strained relationship that existed between the two communities.
Many working programmers saw little value in belonging to either the ACM or
the DPMA, and support for both organizations, as well as for professional

institutions in general, languished during the late 1960s and early 1970s.

163 George Glaser, “Letter to W. Carlson.” Charles Babbage Institute Archives, CBI 23, Box 1, Fld.
3.

247

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Epilogue: No Silver Bullet

A quarter of a century later software engineering remains a term of aspiration. The vast
majority of computer code is still handcrafted from raw programming languages by
artisans using techniques they neither measure nor are able to repeat consistently..."

“Software’s Chronic Crisis,” Scientific American (1994)

I From Exhilaration to Disillusionment

The 1968 NATO Conference on Software Engineering was, according to
contemporary accounts, an exhilarating experience for many participants. The
public acknowledgement of a perceived software crisis was a cathartic moment
for the industry. As one prominent computer scientist described it, “The general
admission of the software failure in this group of responsible people is the most
refreshing experience that I have had in a number of years, because the
admission of shortcomings is the primary condition for improvement.” * Despite
the general recognition of impending crisis, the spirit of the conference was
“positive, even liberatory.”> Attendees rallied behind the organizers’ call for “a

switch from home-made software to manufactured software, from tinkering to

' W. Gibbs, “Software's Chronic Crisis,” Scientific American, September 1994.

? Dijkstra interview, cited in Eloina Palaez, “A Gift From Pandora's Box: The Software
Crisis,” (Ph.D. dissertation, University of Edinburgh, 1988).

* Donald MacKenzie, “A View from the Sonnenbichl: On the Historical Sociology of
Software and System Dependability,” in Mapping the History of Computing: Software
Issues, U. Hashagen, R. Keil-Slawik, A. Norberg, eds. (New York: Springer-Verlag,
forthcoming), 79.

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No Silver Bullet 249

engineering.”* Software engineering emerged as the dominant rhetorical
paradigm for discussing the future of software development. By adopting the
“types of theoretical foundations and practical disciplines that are traditional in
the established branches of engineering,” computer programming could be
successfully transformed from a black art into an industrial discipline. Software
workers from a wide variety of disciplines and backgrounds adopted the rhetoric
of software engineering as a shared discourse within which to discuss their
mutual professional aspirations.

In order to capitalize on the enthusiasm generated in the wake of the
Garmisch meeting, the NATO Science Committee quickly organized a second
conference to be held the following year in Rome, Italy. The 1969 Rome
Conference was intended to have an explicitly practical focus: the goal was to
develop specific techniques of software engineering. As with the Garmisch
meeting, a deliberate and successful attempt was made to attract a wide range of
participants. The resulting conference, however, bore little resemblance to its
predecessor. Whereas the Garmisch participants had coalesced around a shared
sense of urgency, the Rome conference was characterized by conflict. According
to the same observer who had referred glowingly to the Garmish conference as a

“most refreshing experience,” the discussions at the Rome meeting were

* F.L. Bauer, “Software Engineering: A Conference Report,” Datamation 15, 10 (1969).

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250 From “Black Art” to Industrial Discipline

“sterile,” the various groups of attendees “never clicked,” and “most
participants” left feeling “an enormous sense of disillusionment.”> A prolonged
debate about the establishment of an international software engineering institute
proved so acrimonious and divisive that it was omitted from the conference
proceedings: “All I remember is that it ended up being a lot of time wasted, and
no argument ever turned up to make something happen — which is probably just
as well...”®

Why was the Rome conference considered such a disappointment relative to
Garmisch? Many of the same participants had attended both meetings: there had
been no significant changes in terms of demographic makeup or organizational
structure. Neither were there any major new issues or technologies introduced
or discussed. Many of the Rome presentations covered material that had
previously been addressed, albeit at a less detailed and technical level, at
Garmisch. And yet while the Garmisch conference is widely considered to have
marked a pivotal moment in the history of software development - “a major
cultural shift in the perception of programming” - the Rome conference seems to

have been deliberately forgotten.”

®J. Buxton, quoted in Paleaz.

¢ D. Ross, quoted in Paleaz.

7 Martin Campbell-Kelly and William Aspray, Computer: A History of the Information
Machine (New York: Basic Books, 1996), 201.

250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No Silver Bullet 251

One obvious difference between the two events is that the earlier conference
had encouraged participants to focus their attention on a commonly perceived
but vaguely defined emergency, while the latter forced them to deal with specific
controversial issues. Software engineering had emerged as a compelling solution
to the software crisis in part because it was flexible enough to appeal to a wide
variety of computing practitioners. The ambiguity of concepts such as

7o

“professionalism,” “engineering discipline,” and “efficiency” allowed
competing interests to participate in a shared discourse that nevertheless enabled
them to pursue vastly different personal and professional agendas. Industry
managers adopted a definition of “professionalism” that provided for
educational and certification standards, a tightly disciplined workforce, and
increased corporate loyalty. Computer manufacturers looked to “engineering
discipline” as means of countering charges of incompetence and cost-
inefficiency. Academic computer scientists preferred a highly formalized
approach to software engineering that was both intellectually respectable and
theoretically rigorous. Working programmers tended to focus on the more
personal aspects of professional accomplishment, including autonomy, status,
and career longevity. The software engineering model seemed to offer

something to everyone: standards, quality, academic respectability, status and

autonomy.

251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

252 From “Black Art” to Industrial Discipline

The rhetorical flexibility that had served the consensus-seeking Garmisch
participants proved unwieldy when it came to establishing specific standards
and practices, however. The Rome conference illuminated in sharp relief the vast
differences that existed between competing visions for the software engineering
discipline. Unlike the conflict between workers and managers described in the
previous chapter, these divisions were largely internal to the programming
community. The primary split was between academic computer scientists and
commercial software developers. The industry programmers resented being
invited to Rome “like a lot of monkeys to be looked at by theoreticians;” the
theoreticians complained of feeling isolated, of “not being allowed to say

”8

anything.”® As the editors of the conference proceedings have suggested, the
“lack of communication between different sections of the participants” became
the “dominant feature” of the meeting.” “The seriousness of this
communications gap,” and the realization that it “was but a reflection of the
situation in the real world,” caused the gap itself to become a major topic of

discussion.! It was to remain an issue of central concern to the programming

community for the next several decades.

® Christoper Strachey, quoted in Peter Naur, Brian Randall, and].N. Buxton, ed.,
Software engineering Proceedings of the NATO conferences (New York:
Petrocelli/Carter, 1976), 147.

? Naur, et al., 145.

1 Ibid.

252

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No Silver Bullet 253

1/ Software’s Chronic Crisis

In an 1996 article entitled “Software’s Chronic Crisis,” William Gibbs noted
in a Scientific American article that a quarter of a century after the Garmisch
conference, “software engineering remains a term of aspiration,” rather an fully
realized discipline." Indeed, in the years after 1968 the rhetoric of the software
crisis became even more heated. In 1987 the editors of Computerworld
complained that “the average software project is often one year behind plan and
100% over budget.”*? In 1989 the House Committee on Science, Space and
Technology released a report highly critical of the “shoot-from-the-hip” practices
of the software industry. Among other things, the report called for a
professional certification program for programmers. * Later that same year the
Pentagon launched a broad campaign to “lick its software problems” that
included funds for a Software Engineering Institute and the widespread
adoption of the ADA programming language."* ADA was touted by Department
of Defense officials “a means of replacing the idiosyncratic ‘artistic” ethos that

has long governed software writing with a more efficient, cost-effective

' W. Gibbs, “Software's Chronic Crisis,” Scientific American, September 1994.

2 Ann Dooley, “100% Over Budget,” Computerworld, July 8, 1987

 The 33-page report, entitled “Bugs in the Program: Problems in Federal Government
Computer Software Development and Regulation,” was written by two staff members,
James H. Paul and Gregory C. Simon, of the Subcommittee on Investigations and
Oversight of the House Committee on Science, Space, and Technology.

* David Morrison, “Software Crisis,” Defense 21, 2 (1989)

253

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

254 From “Black Art” to Industrial Discipline

engineering mind-set.”*® The list of critical reports, denunciations of current
practices, and proposed “silver-bullet” solutions goes on and on. And yet, in the
words of one industry observer, by the mid-1980s “the software crisis has
become less a turning point than a way of life.”*¢

The continued existence of a four decade long crisis in one of the largest and
fastest growing sectors of the American economy reveals the highly contested
nature of computer technology. Historians of technology have long argued that
all technologies are, at least to a certain degree, socially constructed. That is
simply to say that the physical design of an artifact is inextricably influenced by
its larger environment. In the 1950s and 1960s the electronic digital computer
was introduced into the well-established technical and social systems of the
modern business organization. Like all new technologies, the computer both
took its shape from - and helped to shape — its social, cultural, and technological
context. As the computer became an increasingly important part of the modern
corporate organization, control over its use and identity became increasingly
contested. The conflicting needs and agendas of users, manufacturers, managers,

and programmers all became wrapped up in highly public struggle for control

over the professional territory opened up by the technology of computing.

15 Morrison, “Software Crisis,”
16 John Shore, “Why I Never Met a Programmer I Could Trust,” Communications of the
ACM31, 4 (1988).

254

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

No Silver Bullet 255

Thinking about the software crisis — and invention of the discipline of software
engineering - as a series of interconnected social and political negotiations, rather
than an isolated technical decision about the “one best way” to develop software
components, provides an essential link between internal developments in
information technology and their larger social and historical context. It can help
explain why, in an industry characterized by rapid change and innovation, the

rhetoric of crisis has proven so remarkably persistent.

255

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

——. "Editor's Readout: A Long View of a Myopic Problem.” Datamation 8, 5
(1962): 21-22.

-——. "What's Happening with COBOL?." Business Automation (April, 1968).

——. "DPMA Revises CDP Test Requirements.” Data Management (August 1967):
34-35.

—-—. "Reflections on a Quarter-Century: AFIPS Founders." Annals of the History
of Computing 8, 3 (1986): 225-260.

——. "Will you vote for an association name change to ACIS?." Communications
of the ACM 8, 7 (1965): 424-426.

ACM Curriculum Committee. "An Undergraduate Program in Computer Science
- Preliminary Recommendations.”" Communications of the ACM 8,9
(1965): 543-552.

ACM Curriculum Committee. "Curriculum 68: Recommendations for Academic
Programs in Computer Science." Communications of the ACM11, 3
(1968): 151-197.

Abbott, Andrew. The Systems of Professions: An Essay on the Division of Expert
Labor. Chicago: University of Chicago Press, 1988.

Akera, Atsushi. "Calculating a Natural World: Scientists, Engineers and
Computers in the United States, 1937-1968." Ph.D. diss., University of
Pennsylvania. 1998.

Alexander, T. "Computers Can't Solve Everything." Forfune (October, 1969).

Armer, Paul. "Editor's Readout: Suspense Won't Kill Us.” Datamation19, 6
(1973): 53.

Armer, Paul. "Thinking Big (letter to editor)." Communications of the ACM?2,1
(1959): 2-4.

256

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 257

Aron, Joel. Part I: The Individual Programmer. The Systems Programming Series.
Reading, MA: Addison-Wesley, 1974.

Aron, Joel. Part II: The Programming Team. The Program Development Process.
Reading, MA: Addison-Wesley, 1983.

Aspray, William. "The Supply of Information Technology Workers, Higher
Education, and Computing Research: A History of Policy and Practice in
the United States." In The International History of Information Technology
Policy, Richard Coopey. Oxford: Oxford University Press.

Aspray, William. "Was Early Entry a Competitive Advantage?.” Annals of the
History of Computing (2000): 42-87.

Aspray, William. "The History of Computer Professionalism in America.”
(Unpublished Manuscript) (2000).

Aspray, William, and Arthur Burks, eds. Papers of John Von Neumann on
Computing and Computer Research. Cambridge, MA: MIT Press, 1987.

Backus, John. "Programming in America in the 1950s - Some Personal
Impressions.” In A Aistory of computing in the twentieth century: a
collection of essays, Metropolis, Nick; Howlett, J.; Rota, Gian-Carlo. 125-
135. New York: Academic Press, 1980.

Backus, John. "Automatic Programming: Properties and Performance of
FORTRAN Systems I and I." Proceedings of Symposium on the
Mechanization of the Thought Processes, Middlesex, England, National
Physical Laboratory Press. 1958.

Backus, John. "The FORTRAN automatic coding language.” Proceedings of the
West Joint Computer Conferences, 1957.

Baker, F. Terry, and Harlan Mills. "Chief Programmer Teams." Dafamation 19, 12
(1973): 58.

Bardini, Thierry. Bootstrapping: Douglas Englebart Coevolution, and the
Origins of Personal Computing. Stanford, CA: Stanford University Press,
2000.

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

258 From “Black Art” to Industrial Discipline

Barnett, Michael. Computer Programming in English. New York: Harcourt, Brace
& World, 1969.

Barry. B.S., and Naughton. J.J., "Chief Programmer Team Operations
Description.” U.S. Air Force, Report No. RADC-TR-74-300.

Baum, Claude. The Systems Builders: The Story of SDC. Santa Monica, CA:
System Development Corporation, 1981.

Bemer, Robert. "A view on the history of COBOL." Honeywell Computer Journal
5,3 (1971): 130-135.

Bendix Computer Division. "Is Your Programming Career in a Closed Loop?."
Datamation 8, 9 (1962): 86.

Beniger, James R. The Contro! Revolution: Technological and Economic Origins
of the Information Society. Cambridge: Harvard University Press, 1986.

Block, LE. "Report on Meeting Held at University of Pennsylvania Computing
Center.," April 9, 1959.

Boehm, Barry. "Software Engineering.” /EEFE Transactions on Computers C-25,12
(1976): 1226-41.

Boehm, Barry. "Software and Its Impact: A Quantitative Assessment."”
Datamation 19,5 (1973): 48-59.

Boguslaw, Robert, and Warren Pelton. "Steps: A Management Game for
Programming Supervisors.” Datamation 5, 6 (1959): 13-16.

Bowden, B.V. Faster than Thought: A Sympesium on Digital Computing
Machines. London: Sir Isacc Pitman & Sons, 1953.

Brooks, Frederick P. "No Silver Bullet: Essence and Accidents of Software
Engineering." JEEE Computer, April, 1987.

Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engineering.
New York: Addison-Wesley, 1975.

258

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 259

Bylinsky, Gene. "Help Wanted: 50,000 Programmers."” Fortune75, 3 (March,
1967).

Callahan, John. "Letter to the editor." Datamation7, 3 (1961): 7.

Campbell-Kelly, Martin, and William Aspray. Computer: A History of the
Information Machine. New York: Basic Books, 1996.

Campbell-Kelly, Martin, and Michael Williams, eds. The Moore School Lectures:
Theory and Techniques for the Design of Electronic Digital Computers.
Cambridge, MA: MIT Press: Charles Babbage Reprint Series, 1985.

Canning, Richard. "Managing the Programming Effort." EDP Analyzer6, 6
(1968): 1-15.

Canning, Richard. "Issues in Programming Management." EDP Analyzer12, 4
(1974): 1-14.

Canning, Richard. "Professionalism: Coming or Not?." EDP Analyzer14, 3 (1976):
1-12.

Canning, Richard. "Managing Staff Retention and Turnover." EDP Analyzer15, 8
(1977): 1-13.

Canning, Richard. "The DPMA Certificate in Data Processing." EDP Analyzer3,7
(1965): 1-12.

Canning, Richard. "The Question of Professionalism." EDP Analyzer6, 12 (1968):
1-13.

Carlson, Jack. "On determining CS education programs (letter to editor)."
Communications of the ACM9, 3 (1966): 135.

Ceruzzi, Paul. "Electronics Technology and Computer Science, 1940-1975: A
Coevolution." Annals of the History of Computing 10, 4 (1989): 257-275.

Chandler, Alfred P. The Visible Hand: The Managerial Revolution in American
Business. Cambridge, MA: Belknap Press, 1977.

259

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260 From “Black Art” to Industrial Discipline

Cohen, I. Bernard. Howard Aiken: Portrait of a Computer Pioneer. Cambridge:
MIT Press, 1999.

Conway, B., J. Gibbons, and D.E. Watts. Business experience with electronic
computers, a synthesis of what has been learned from electronic data

processing installations. New York: Price Waterhouse, 1959.

Correll, Quentin. "Letters to the Editor." Communications of the ACM1, 7 (1958):
2.

Couger, Daniel, and R Zawacki. "What Motivates DP Professionals?.”
Datamation 24, 9 (1978): 116-123.

Cox, Brad. "There is a Silver Bullet." Byfe 15, 10 (1990): 209.

Datamation Editorial. "Editor's Readout: The Certified Public Programmer."
Datamation 8, 3 (1962): 23-24.

Datamation Editorial. "EDP's Wailing Wall." Datamation 13,7 (1967): 21.
Datamation Editorial. "Learning a Trade." Datamation 12, 10 (1966): 21.

Datamation Editorial. "The Thoughtless Information Technologist." Dafamation
12, 8 (1966): 21-22.

Datamation Editorial. "Checklist for Oblivion." Datamation 10, 9 (1964): 23.
Datamation Editorial. "The Facts of Life." Datamation 14, 3 (1968): 21.
Datamation Editorial. "The Cost of Professionalism.” Datamation9, 10 (1963): 23.

Datamation Editorial. "Professional Societies.or Technician Associations?."
Datamation11, 8 (1965): 23.

Datamation News Brief. "First Programmer Class at Sing Sing Graduates."
Datamation 14, 6 (1968): 97-98.

Datamation Report. "DP Certification Program Announced by NMAA."
Datamation 8, 3 (1962): 25.

260

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 261

Datamation Report. "Certificate in Data Processing." Datamation 9, 8 (1963): 59.

DiNardo, George. "Software Management and the Impact of Improved
Programming Technology." Chap. in Proceedings of 1975 ACM Annual
Conference. 288-290. New York: Association for Computing Machinery,
1975.

Dijkstra, Edsger. "The Humble Programmer.” Chap. in ACM Turing Award
Lectures: The First Twenty Years, 1966-1985. New York: ACM Press, 1987.

Dijkstra, Edsger. "Go To Statement Considered Harmful." Communications of
the ACM11, 3 (1968): 147-48.

Editors of DATA-LINK. "What's in a Name? (letter to editor).” Communications
of the ACM1, 4 (1958): 6.

Fein, Louis. "The Role of the University in Computers, Data Processing, and
Related Fields." Communications of the ACM 2,10 (1959): 7-14.

Fein, Louis. "ACM Has a Crisis of Identity?." Communications of the ACM10, 1
(1967): 1.

Fike, John. "Vultures Indeed." Datamation 13, 5 (1967): 12.

Flamm, Kenneth. Creating the computer government, industry, and high
technology. Washington, D.C: Brookings Institute, 1988.

Flywheel, Wolf. "Letter to the editor (on professionalism)." Dafamation 5, 5
(1959): 2.

Forest, Robert. "EDP People: Review and Preview." Datamation 18, 6 (1972): 65-
67.

Fritz, W. Barkley. "The Women of Eniac." Annals of the History of Computing 18,
3 (1996): 13-23.

Fulkerson, L. "Should there be a CS Undergraduate Program? (letter to editor)."
Communications of the ACM10, 3 (1967): 148.

261

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

262 From “Black Art” to Industrial Discipline

Galler, Bernard. "The AFIPS Constitution (President's Letter to ACM
Membership)." Communications of the ACM12, 3 (1969): 188.

Galler, Bernard. "The Journal (President’s Letter to ACM Membership)."
Communications of the ACM12, 2 (1969): 65-66.

Gass, Saul. "ACM class structure (letter to editor).” Communications of the ACM
2,5 (1959): 4.

Geckle, Jerome. "Letter to the editor.” Datamation 11, 9 (1965): 12-13.
Gibbs, W. "Soiftware's Chronic Crisis." Scientific American, September 1994, 86.

Golda, John. "The Effects of Computer Technology on the Traditional Role of
Management.”" MBA thesis, Wharton School, University of Pennsylvania.
1965.

Goldstine, Herman. The Computer from Pascal to von Neumann. Princeton:
Princeton University Press, 1972.

Goodman. William, "The software and engineering industries: threatened by
technologcal change?.” Bureau of Labor Statistics. Monthly Labor Review
(August 1996).

Gordon, Robert. "Review of Charles Lecht, The Management of Computer
Programmers." Datamation 14, 4 (1968): 200-202.

Gotterer, Malcolm. "The Impact of Professionalization Efforts on the Computer
Manager." Chap. in Proceedings of 1971 ACM Annual Conference. 367-
375. New York: Association for Computing Machinery, 1971.

Greenbaum, Joan. In the Name of Efficiency: Management Theory and Shopfloor
Practice in Data-Processing Work. Philadelphia: Temple University Press,
1979.

Greenbaum, Joan. "On twenty-five years with Braverman's 'Labor and Monopoly

Capital.’ (Or, how did control and coordination of labor get into the
software so quickly?)." Monthly Review 50, 8 (1999).

262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 263

Greenwood, Frank. "Education for Systems Analysis: Part One." Systems &
Procedures Journal (Jan-Feb, 1966): 13-15.

Grier, David Allan. "The ENIAC, the verb to program and the Emergence of
Digital Computers." Annals of the History of Computing 18, 1 (1996).

Grosch, Herb. "Programmers: The Industry’'s Cosa Nostra." Datamation12, 10
(1966): 202.

Grosch, Herb. "Computer People and their Culture." Datamation?7, 10 (1961): 51-
52.

Grosch, Herb. "Software in Sickness and Health." Datamation7, 7 (1961): 32-33.
Grosch, Herb. "Plus and Minus." Datamation 5, 6 (1959): 51.
Gruenberger, Fred. "Problems and Priorities." Datamation 18, 3 (1972): 47-50.

Gruenberger, Fred, and Stanley Naftaly, eds. Data Processing.Practically
Speaking. Los Angeles: Data Processing Digest, 1967.

Guarino, Roger. "Managing Data Processing Professionals.” FPersonnel Journal
(Dec., 1969): 972-975.

Guerrieri, J.A. "Certification: Evolution, Not Revolution." Datamation 14, 11
(1973): 101.

Hamming, Richard. "One Man's View of Computer Science." Chap. in ACM
Turing Award Lectures: The First Twenty Years, 1966-1955. 207-218. New
York: ACM Press, 1987.

Hanke, John, William Boast, and John Fellers. "Education and Training of a
Business Programmer." Journal of Data Management3, 6 (June, 1965): 38-
53.

Hashagen, U., A. Norberg, and R. Keil-Slawik, eds. Mapping the History of
Computing: Software Issues. New York: Springer-Verlag, 2001.

Head, Robert. "Controlling Programming Costs." Datamation 13,7 (1967): 141-
142.

263

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

264 From “Black Art” to Industrial Discipline

Herz, D. New Power for Management. New York: McGraw-Hill, 1969.

Hoare, Anthony. "Keynote Address: Software Engineering." 3rd International
Conference on Sofware Engineering Proceedings, 1974.

Jacobson, Arvid, ed. Proceedings of the First Conference on Training Personnel
for the Computing Machine Field. Detroit: Wayne Uriversity Press, 1955.

Jay, Anthony. Corporation Man. New York: Random House, 1971.

Jenks, James. "Starting Salaries of Engineers are Deceptively High." Datamation
13,1 (1967): 13.

Jones, Richard. "A time to assume responsibility.” Datamation 13, 9 (1967): 160.
Kaufman, Louis, and Richard Smith. "Let's Get Computer Personnel on the
Management Team." 7Training and Development Journal (December,

1966): 25-26.

Keelan, C.I. "Controlling Computer Programming." Journal of Systems
Management (Jan., 1969): 30-33.

Kraft, Philip. Programmers and Managers: The Routinization of Computer
Programming in the United States. New York: Springer-Verlag, 1977.

Kuch, T.D.C. "Unions or licensing? or both? or neither?." Infosystems (January
1973): 42-43.

Larson, Harry. "EDP - A 20 Year Ripoffl." Infosystems (November 1974): 26-30.

Larson, Magali Sarfatti. The Rise of Professionalism: A Sociological Analysis.
Berkeley: University of California Press, 1977.

Layton, Edwin. The Revolt of the Engineers: Social Responsibility and the
American Engineering Profession. Baltimore: Johns Hopkins University
Press, 1971.

Leavitt, Harold, and Thomas Whisler. "Management in the 1980's." Harvard
Management Review 36, 6 (1958): 41-48.

264

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 265

Lecht, Charles. The Management of Computer Programming Projects. New York:
American Management Association, 1967.

Ledbetter, William. "Programming Aptitude: How Significant is It?." Personnel/
Journal 54, 3 (March, 1975): 165-166, 175.

Leslie, Harry. "The Report Program Generator." Dafamation (26-28) 13, 6 (1967).

Libellator. "Programming Personalities in Europe." Dafamation 12,9 (1966): 28-
29.

Lucas, Henry S. "On the failure to implement structured programming and other
techniques.” Chap. in Proceedings of 1975 ACM Annual Conference. 291-
293. New York: Association for Computing Machinery, 1975.

Mahoney, Michael. "The History of Computing in the History of Technology."
Annals of the History of Computing 10 (1988).

Mahoney, Michael. "Computer Science: The Search for a Mathematical Theory."
In Science in the 20th Century, Krige, John; Pestre, Dominique.
Amsterdam: Harwood Academic Publishers, 1997.

Mahoney, Michael. "Software: the self-programming machine." In Creating
Modern Computing, Akera, Atsushi; Nebeker, F.

Markham, Edward. "Selecting a Private EDP School." Datamation 14, 5 (1968): 33-
40.

Markham, Edward. "EDP Schools - An Inside View." Datamation 14, 4 (1968): 22-
27.

McClure, Carma. Managing Software Development and Maintenance. New
York: Van Nostrand Rheinhold, 1981.

McCracken, Daniel. "The Human Side of Computing.” Datamation7, 1 (1961): 9-
11.

McCracken, Daniel. "The Software Turmoil: Nine Predictions for '62."
Datamation 8, 1 (1962): 21-22.

265

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

266 From “Black Art” to Industrial Discipline

McCracken, Daniel. "Is There FORTRAN In Your Future?." Datamation 19, 5
(1973): 236-237.

McGowan, Clement, and John Kelly. Top-Down Structured Programming
Techniques. New York: Petrocelli/Carter, 1975.

McGregor, Douglas. The Human Side of Enterprise. New York: McGraw-Hill,
1960.

McKinsey & Company. "Unlocking the Computer's Profit Potential.” Computers
& Automation (April 1969): 24-33.

McMurrer, J.A., and J.R. Parish. "The People Problem." Datamation 16, 7 (1970):
57-59.

McNamara, W.]., and J.L. Hughes. "A Review of Research on the Selection of
Computer Programmers." Personnel Psychology 14, 1 (Spring, 1961): 39-
51.

Menkhaus, Edward. "EDP: Nice Work If You Can Get It." Business Automation
(March 1969): 41-45, 74.

Metropolis, Nick, J. Howlett, and Gian-Carlo Rota, eds. A history of computing
in the twentieth century a collection of essays. New York: Academic Press,
1980.

Metzger, Philip. Managing a Programming Project. Englewood Cliffs, N.J:
Prentice-Hall, 1973.

Mitre Corporation. "Are You Working Your Way Toward Obsolescence.”
Datamation 12, 6 (1966): 99.

Morgan, H.L., and J.V. Soden. "Understanding MIS Failures." Data Base (Winter
1973): 157-171.

Morrison, David. "Software Crisis." Defense 21, 2 (1989): 72.

Mumford, Enid. Job Satisfaction: A study of computer specialists. London:
Longman Group Limited, 1972.

266

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 267

Myers, Charles, ed. The Impact of Computers on Management. Cambridge, MA:
MIT Press, 1967.

Naur, Peter, Brian Randall, and J.N. Buxton, ed. Software engineering
Proceedings of the NATO conferences. New York: Petrocelli/Carter, 1976.

Noble, David F. Forces of Production: A Social History of Industrial Automation.
New York: Alfred A. Knopf, 1984.

Noble, David F. America By Design: Science, Technology and the Rise of
Corporate Capitalism. Oxford: Oxford University Press, 1977.

O'Shields, Joseph. "Selection of EDP Personnel.” Personnel Journal44, 9 (October
1965): 472-474.

Oettinger, Anthony. "The Hardware-Software Complexity." Communications of
the ACM 10, 10 (1967): 606-606.

Oettinger, Anthony. "On ACM's Responsibility (President's Letter to ACM
Membership) (1966)." Communications of the ACM9, 8 (1966): 545-546.

Oettinger, Anthony. "ACM sponsors professional development program
(President's Letter to ACM Membership)." Communications of the ACM9,
10 (1966): 712-713.

Oettinger, Anthony. "President's reply to Louis Fein." Communications of the
ACM10, 1 (1967): 1,61.

Ogdin, J.L. "The mongolian hordes versus superprogrammer." Infosystems
(December 1973): 20-23.

Opler, Ascher. "Trends in Programming Concepts." Datamation7,1 (1961): 13-15.

Orden, Alex. "The Emergence of a Profession.” Communications of the ACM 10,
3 (1967): 145-147.

Overton, Scott. "Programmer/Analyst: The Merger of Diverse Skills." Personnel
Journal52, 7 (July, 1972): 511-513.

267

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

268 From “Black Art” to Industrial Discipline

Parnas, David. "On the preliminary report of C3S (letter to editor).”
Communications of the ACM9, 4 (1966): 242-243.

Paschell, William. Aufomation and employment opportunities for office workers;
a report on the effect of electronic computers on employment of clerical
workers. Washington, D.C: Bureau of Labor Statistics, 1958.

Patrick, Robert. "The Gap in Programming Support." Datamation7, 5 (1961): 37.

Paul. James, and Simon. Gregory, "Bugs in the Program: Problems in Federal
Government Computer Software Development and Regulation.”
Subcommittee on Investigations and Oversight of the House Committee

on Science, Space, and Technology (1989).

Payne, Robert. "Reaction to Publication Proposal (letter to editor).”
Communications of the ACMS8, 1 (1965): 71.

Personnel Journal Editorial. "Professionalism Termed Key to Computer
Personnel Situation.” Personnel Journal51, 2 (February, 1971): 156-157.

Philips, Charles. "Report from the Committee on Data Systems Languages."
Association for Computing Machinery, Boston, September 1, 1959.

Phillips, Charles. "Report from the Committee on Data Systems Languages.,”
Boston, MA, Association for Computing Machinery. September 1, 1959.
Cited in Wexelblatt, p. 200.

Porat, Avner, and James Vaughan. "Computer Personnel: The New Theocracy -
or Industrial Carpetbaggers." Personnel Journal48, 6 (1968): 540-543.

Postley, John. "Letter to Editor." Communications of the ACM 3, 1 (1960): A6.

Pugh, Emerson, Lyle Johnson, and John Palmer. /BAM's 360 and Early 370
Systems. Cambridge, MA: MIT Press, 1991.

RAND Symposium. "On Programming Languages, Part [." Datamation 8, 10
(1962): 25-32.

RAND Symposium. "On Programming Languages, Part I." Dafamation 8, 11
(1962): 23-30.

268

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 269

RAND Symposium. "Defining the Problem, Part I." Datamation 11, 9 (1965): 66-
73.

RAND Symposium. "Is It Overhaul or Trade-in Time? Part II." Datamation 5, 5
(1959): 17-26,44-45.

Reid, H.V. "Problems in Managing the Data Processing Department." Journal of
Systems Management (May, 1970): 8-11.

Reinstedt, R.N, and Raymond Berger. "Certification: A Suggested Approach to
Acceptance." Datamation 19, 11 (1973): 97-100.

Rhee, H. A. Office Automation in Social Perspective: The Progress and Social
Implications of Electronic Data Processing. Oxford: Basil Blackwell, 1968.

Rings, N. "Programmers and Longevity." Datamation12, 12 (1966).

Romberg, Bernhard. "Managing software, It can be done." Infosystems
(December 1973): 42-43.

Rose, Michael. Computers, Managers, and Society. Harmondsworth: Penguin,
1969.

Rosen, Saul, ed. Programming Systems and Languages. New York: McGraw-Hill,
1967.

Rosin, Robert. "Relative to the President’'s December Remarks." Communications
of the ACM10, 6 (1967): 342.

Ross, David. "Certification and Accreditation." Dafamation 14, 9 (1968): 183-184.

Rothery, Brian. Installing and Managing a Computer. London: Business Books,
1968.

Rowan, T.C. "The Recruiting and Training of Programmers." Datamation 4, 3
(1958): 16-18.

Sackman, Hal. "Conference on Personnel Research." Datamation 14,7 (1968): 74-
76, 81.

269

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

270 From “Black Art” to Industrial Discipline

Sackman, Hal, W.]. Erickson, and E.E. Grant. "Exploratory Experimental Studies
Comparing Onling and Offline Programming Performance."
Communications of the ACM11,1 (1968): 3-11.

Sammett, Jean. Programming Languages: History and Fundamentals.
Englewood Cliffs, N.J: Prentice-Hall, 1969.

Sanden, Bo. "Programming masters break out of the managerial mold."
Computerworld, June 16, 1986.

Saxon, James. "Programming Training: A Workab’e Approach." Datamation9, 12
(1963): 48-50.

Shapiro, Stuart. "Splitting the Difference: The Historical Necessity of Synthesis in
Software Engineering." Annals of the History of Computing 19, 1 (1997):
20-54.

Shaw, Christopher. "Programming Schisms." Datamation 8,9 (1962): 32.

Shneiderman, Ben. "The Relationship Between COBOL and Computer Science.”
Annals of the History of Computing7, 4 (1985): 348-352.

Sidlo, C.M. "The Making of a Profession (letter to editor).” Communications of
the ACM 4, 8 (1961): 366-367.

Simon, Herbert, Allen Newell, and Alan Perlis. "Computer Science (letter to
editor)." Science 157, 3795 (Sept. 22, 1967): 1373-1374.

Sperry Rand Corp. "Programming for the UNIVAC System.," January, 1953. Box
372, Accession 1825, Hagley Achives, Sperry-Univac collection.

Stewart, Rosemary. How Computers Affect Management. Cambridge, MA: MIT
Press, 1971.

Stone, Milt. "In Search of an Identity." Datamation 18, 3 (1972): 52-59.

Tanaka, Richard. "Fee or Free Software." Dafamation 13, 10 (1967): 205-206.

270

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 271

Taylor, Frederick Winslow. The Principles of Scientific Management. New York:
W.W. Norton & Company, 1911.

Tropp, H.S. "ACM's 20th Anniversary: 30 August 1967." Annals of the History of
Computing9, 3 (1988): 269.

Tucker, Allan. Programming Languages. Reading, MA: Addison-Wesley, 1977.

United States Department of Labor, "Manpower Development and Outlook in
the Computing and Accounting Machines Industry.” (May, 1968) Industry
Manpower Surveys. reprinted from Area Trends in Employment and
Unemployment, April 1968.

Vincenti, Walter. What engineers know and how they know it analytical studies
from aeronautical history. Baltimore: Johns Hopkins University Press,
1990.

Walker, W.R. "MIS Mysticism (letter to editor)." Business Automation 16,7
(1969): 8.

Ware, Willis. "As I See It: A Guest Editorial." Datamation11, 5 (1965): 27-28.

Ware, Willis. "AFIPS in Retrospect." Annals of the History of Computing$8, 3
(1986): 303-311.

Webster, Bruce. "The Real Software Crisis." Byte Magazine21, 1 (1996): 218.
Wegener, Peter. "Three Computer Cultures: Computer Technology, Computer
Mathematics, and Computer Science." Advances in Computers 10 (1970):

7-78.

Weinberg, Gerald. The Psychology of Computer Programming. New York: Van
Nostrand Rheinhold, 1971.

Weiss, Eric. "Publications in Computing: An Informal Review." Communications
of the ACM15, 7 (1972): 492-297.

Wesoff, Jay. "The Systems People Blues." Datamation 14, 6 (1968): 10-11.

271

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

272 From “Black Art” to Industrial Discipline

Wexelblat, Richard, ed. History of programming languages. New York:
Academic Press, 1981.

White, Thomas. "The 70's: People." Datamation 16, 7 (1973): 40-46.

Wilensky, Harold. "The Professionalizaticn of Everyone?." American Journal of
Sociology 70, 2 (1964): 137-158.

Wilkes, Maurice, David Wheeler, and Stanley Gill. Preparation of Programs for
an Electronic Digital Computer. Reading, MA: Addison-Wesley, 1951.

Williams, Michael. A History of Computing Technology. Washington, D.C: IEEE
Computer Society Press, 1997.

Wishner, Raymond. "Comment on Curriculum 68." Communications of the ACM
11, 10 (1968): 658.

Xerox Corporation. "At Xerox, we look at programmers.and see managers (ad).”
Datamation 14, 4 (1968).

Yates, JoAnne. Control Through Communication: The Rise of System in
American Management. Baltimore: Johns Hopkins University Press, 1989.

Yourdon, Edward, ed. Classics in Software Engineering. New York: Yourdon
Press, 1979.

Zaphyr, P.A. "The science of hypology (letter to editor).” Communications of the
ACM?2,1 (1959): 4.

Zussman, Robert. Mechanics of the Middle Class: Work and Politics Among
American Engineers. Berkeley: University of California Press, 1985.

272

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

